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ABSTRACT 

Students in introductory programming classes often articulate their questions and 

information needs incompletely. Consequently, the automatic classification of student 

questions to provide automated tutorial responses is a challenging problem. This 

dissertation analyzes 411 questions from an introductory Java programming course by 

reducing the natural language of the questions to a vector space, and then utilizing cosine 

similarity to identify similar previous questions. I report classification accuracies 

between 23% and 56%, obtaining substantial improvements by exploiting domain 

knowledge (compiler error messages) and educational context (assignment name). My 

results are especially timely and relevant for online courses where students are 

completing the same set of assignments asynchronously and access to staff is limited. 
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for my students 
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And the King shall answer and say unto them, Verily I say unto you, Inasmuch as ye 
have done it unto one of the least of these my brethren, ye have done it unto me 

--Matthew 25:40 
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CHAPTER 1 

INTRODUCTION 

Benjamin Franklin observed "The only thing more expensive than education is 

ignorance" [31]. Education has become even more expensive since Benjamin Franklin 

made this famous observation, with current college educations ranging in price from 

$2,500 -$25,000 per semester for tuition alone. The cost of an education is increasing 

faster than the rate of inflation, 2.9% per year after inflation [13]. An education often 

means a better paying job, more fulfilling work, and better social connections. In 

America, an education is critical to maintaining the democratic ideals of our forefathers. 

Research that can help control the cost of an education is a prerequisite to preserving the 

promise of equal opportunity for all. 

The reasons for the high cost of a college education are numerous, but one of the 

greatest contributors is the human resources, and specifically the teaching staff. To help 

control costs, some colleges allow very large classes, especially for the introductory 

material. Class sizes of between 100 and 1000 are typical of many freshman and 

sophomore classes. One professor alone cannot hope to help that many students enrolled 

in a single course, and frequently they find themselves lecturing and relying upon 

teaching assistants (TAs) in order to evaluate the students, answer questions, and provide 
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human contact. Although cheaper than a professor, these teaching assistants still 

represent a major cost for the university. The School of Computing at the University of 

Utah spent $320,671 for the salaries of teaching assistants in 2007-2008. In majors such 

as computer science where students have access to lucrative internships and easy access 

to financial aid, recruiting good TAs can be a significant challenge. Furthermore, 

students will typically work as a TA for a semester or two, so most universities are 

required to constantly recruit TAs, and they typically need to be retrained every semester. 

Although the direct, cash costs of human TAs are much lower than the cost of professors, 

the hidden, indirect costs are quite a bit higher including time to recruit and train them, 

benefits including health insurance and tuition, and others. 

Teaching assistants generally perform a number of important roles in a traditional 

college course including lab or section leader, assignment grader, and personal tutor. 

Teaching assistants most commonly act as a personal tutor during consulting hours in 

which students are allowed to visit the TA at a predefined location at predefined hours. 

However, finding a time that is suitable for both the TA and the student to meet can be a 

challenge. Modern students have many more options when spending their time compared 

to previous generations, and many students in this generation want their courses and 

course materials available and accessible on their own time frame. 

In recent years, the rise of electronic learning has provided a partial solution to 

this growing problem. Electronic learning includes both online courses and technology 

that supports learning such as e-mail and electronic bulletin boards. Compared to 

traditional higher education with an enrollment growth rate of 1.5%, online courses are 
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growing very rapidly; at 9.7%, the growth rate of online courses is more than six times 

the traditional course growth rate [6]. Almost 3.5 million or 20% of all U.S. higher 

education students were taking at least one online course in the fall of 2006 [6]. 

Unfortunately, online courses still have barriers, including a "lack of acceptance of online 

instruction by faculty" and "students need more discipline to succeed in online courses" 

[6]. E-mail and electronic bulletin boards are even more prevalent, but they also have 

problems. E-mailed answers to student questions frequently require students to wait until 

an instructor chooses to check e-mail and send a response (sometimes more than a day). 

Electronic bulletin boards can be difficult to navigate and make it difficult for professors 

to enforce a particular sequence in a tutorial dialog. 

This dissertation describes a new approach to answering some student questions 

automatically that has the potential provide immediate answers, improve navigation, and 

enforce a particular sequence in a tutorial dialog. The ultimate goal is to create a system 

that can provide automated answers to common questions that are similar to other 

questions already in the system. This dissertation investigates the key component of such 

a system: the automatic classification of student questions. 

1.1 Problem 

A comprehensive system for mediating student questions should have several 

features. The system should help the students recognize when they need to ask a 

question, classify the students' questions, provide automated interventions, and evaluate 

the effect of the interventions upon the student. This dissertation focuses on the central 
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problem in the pipeline, classifying student questions. Specifically, the dissertation 

focuses on classifying the questions that novice programmers ask in an introductory 

computer science course. 

Classifying the questions that novice programmers ask in order to provide tutorial 

interventions is a challenging open problem. Students often articulate their questions and 

information needs incompletely. They also hedge, use colloquial language, misspell 

words, and write ungrammatically. For example, the following are information requests 

that novice programming students have made: 

• "How do i return the file extension only?" 

• "I need help extracting a file extension from a filename." 

Although phrased differently, both sentences indicate the same need, namely help with 

the file extension extraction problem; therefore, they should be classified the same way. 

This research focuses on the problem of classifying student questions by matching them 

to previous questions with similar meanings but different phrasings. 

1.2 Contributions 

This dissertation makes three contributions towards understanding the questions 

that novice programming students ask. First, the dissertation describes a unique software 

artifact called the Virtual Teaching Assistant system that mediates the question-

answering process between students and staff and facilitates logging and mining the 

relevant data. This software system captures the natural language in the questions that 

students ask as well as the source code snapshots and context such as the date and 
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assignment that the student is working on. Second, the dissertation describes a dataset 

consisting of ecologically valid questions asked by students in an introductory 

programming class, including the dates and the assignments about which the questions 

were asked. This dataset enables investigations of patterns in question asking within a 

course. Third, the dissertation describes an analysis framework and an analysis showing 

that the additional context including the date and the assignment number can be 

leveraged to improve the classification of questions that students ask. 

1.3 Overview 

To facilitate the study of student questions in an introductory programming 

course, I needed a corpus of the questions that students ask in that context. To collect 

ecologically valid data, I built the Virtual Teaching Assistant (VTA) system and 

deployed it in an introductory computer science course for a total of approximately one 

semester. The system mediated help requests between students and teaching assistants 

(TAs), capturing both the students' natural language and the corresponding code 

snapshots associated with a help request as well as timestamps, the assignment name, the 

answer, who answered it, and other relevant information. 

Using this system, students typed input into a short form on a student software 

client, including login, machine name, Java class, Java method, and the actual question. 

Additionally, the students used a file chooser dialog to select the directory containing 

their source code. When the students clicked a button to submit their question, the 

system uploaded all of their code plus the accompanying information and question. 
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Questions and student source code submitted to the system appeared in a 

teaching staffs software client of the system, ordered by time of submission. A member 

of the teaching staff could answer the question in person or via the system with a text or 

URL response. The TA also indicated a category for each question. Then, the system 

logged the answer and the category to a database along with the question. The answer 

that the human TA gave was displayed in the interface of the student's software client. 

To facilitate research, after the data were collected, each question was manually 

categorized by one or more teaching assistants. This dissertation examines data collected 

during approximately one semester of system usage. 

1.4 Data 

Questions asked in Introduction to Computer Science 1 (CS1410) at the 

University of Utah form the dataset for this dissertation. Most students in Computer 

Science 1 are age 18-22. Computer Science 1 is the first required computer science 

course for computer science majors, with a strong emphasis on the Java programming 

language. The course has long hours for novice programmers and typically high dropout, 

fail, and withdrawal rates. The majority of students who take Computer Science 1 hope 

to major in computer science or a related field, but they must pass that class along with 

three other courses with sufficiently high grades to attain official status as a computer 

science major. Although approximately 233 students were active in the course during the 

study period, only 63 of them asked questions while using the study's logging software 

during the study period. 
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I tagged all of the data by associating all questions that could be answered with 

the same response to the same, unique tag. Then an undergraduate TA tagged 

approximately a third of the data, assigning tags from a set devised for that assignment. 

The TA did not recode the other two thirds of the data, but because the inter-rater 

reliability for the questions we sampled was high (Cohen's Kappa=0.872), I included all 

of the data in the final dataset. This left a dataset of 411 questions from 13 different 

assignments covering a total of 143 answer categories or information needs. Of the 411 

questions, 268 of the questions (143 subtracted from 411) were repetitive in nature, and 

had a similar previous question. That means that 66% of the questions were repetitive. 

1.5 Analysis 

Table 1.1 shows some sample student questions and the corresponding answer 

categories. The primary analysis utilizes an online learning framework to identify similar 

previous questions. Each question is compared to all previous questions, and the 

previous question with the highest cosine similarity score when compared to this question 

is considered the most similar. If the current question and the most similar question have 

the same answer category, the system earns a point for accuracy. For example, in Table 

1.1, Q2 would only be compared to Ql, and the system would not earn a point for 

accuracy. However, Q5 would be compared to Ql, Q2, Q3, and Q4. Of these, Q2 would 

be the most similar, and since Q2 and Q5 share an answer category, the system would 

earn one point for accuracy. 
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Table 1.1. Sample Questions, Vector Stems, and Answer Categories 

01 
Q2 

Q3 

Q4 
Q5 

Natural Language 
How do i return the file extension only? 
my variable for rectSideOne is suppose to be 
1/9, the program is returning a 0 for this 
calculation. I have no idea why. 
I need help extracting a file extension from a 
filename. 
program is not computing volume correctly 
Im having trouble understanding why (1/9) 
equals 0.0 instead of 
0.111111 

Answer Category 
File extension extraction 
Integer division 

File extension extraction 

Integer division 
Integer division 

The analysis chapter also discusses new and novel methods for representing and 

incorporating educational context and compiler error messages in the vector space model. 

Specifically, I show that the compiler error messages must be processed in conjunction 

with source code and data from the Internet to extract underlying errors, and a technique 

called answer caching can be synergistically employed to improve classification 

accuracy. The following chapter also describes auxiliary analyses, including a 

comparison of the data across semesters and an investigation of a batched and supervised 

learning approach to classifying the questions that students ask. 

1.6 Results 

As shown in Table 1.2 and Figure 1.1,1 report accuracy scores with two different 

denominators, total questions (411) and repetitive questions (268). Total questions 

includes the entire corpus of questions that the students asked using the VTA system. 

The repetitive questions are questions that were asked more than once. Of these, only the 
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Table 1.2. Sample Questions, Vector Stems, and Answer Categories 

Baseline 

With Error Msgs 
and Answer Cache 

Aggregated 

Total Questions 
93/411 
(23%) 

104/411 
(25%) 

Repetitive Questions 
93/275 
(35%) 

104/275 
(39%) 

Disaggregated 

Total Questions 
113/411 
(27%) 

111/411 
(27%) 

Repetitive Questions 
113/204 
(55%) 

111/204 
(54%) 

Classification Accuracy 

8« 
45. 
40. 

iES * o 30 
3 O 25 
O -a 
<-> a> 
£ ic 
m — 
£: w 
Q) TO 

Q . 
O 

20 
15 
10. 
5. 
0 

00% 
00% 
00% 
00% 
00% 
00% 
00% 
00% 
00% 
00% 

a Total Questions 

• Repetitive Questions 

Baseline (Cosine With Answer With 
Similarity with Caching and Error Disaggregation by 

Natural Language) Messages Assignment 

Classification Method 

Figure 1.1. Classification Accuracy 

repetitive questions bar could theoretically reach 100%. In all cases, the numerator is the 

number of correct similar questions found. 

1.6.1 Baseline 

As a baseline, cosine similarity is applied to the natural language of the students' 

questions. With that baseline, the algorithm can classify 96 questions or 35% of the 

repetitive questions and 23% the total questions. For those questions, an answer to a 

previous question could theoretically be recycled to answer that question. 
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1.6.2 With Error Messages and Answer Caching 

The low accuracy of question classification suggests room for substantial 

improvement. One possible way to improve classification is to leverage some domain 

specific knowledge, specifically the error messages from the compiler. Since more than 

40% of the questions were submitted with code that did not compile, the compiler error 

messages represent a source of substantial unused data. To incorporate the error messages 

into the model, they were automatically processed to produce a term representing the 

underlying error, such as "capitalization" or "missinglmport," and those terms were 

incorporated into the model. To further boost accuracy, I leveraged a technique called 

answer caching [58] in which questions with the same answer category are merged to 

form a single vector. Without answer caching, the five questions in Table 1.1 are 

represented with five vectors. With answer caching, they are represented with two 

vectors, one for "File extension extraction" (the sum of the vectors for Ql and Q3) and 

one for "Integer division" (the sum of the vectors for Q2, Q4, and Q5). The number of 

correctly classified questions (or numerator) for the "With Answer Caching and Error 

Messages" method is 104, and the denominators are the same as they were in the baseline 

conditions, 411 for total questions and 268 for repetitive questions. In this condition, the 

algorithm can classify 25% of the total questions and 39% of the repetitive questions. 

1.6.3 Disaggregating by Assignment 

For a final improvement in classification accuracy, the data was disaggregated by 

assignment. Questions were compared only to other questions from the same assignment. 
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As shown in Figure 1.1, this technique improved the number of correctly classified 

questions (or numerator) to 113 or 28% of total questions and 42% of repetitive questions 

With the data disaggregated by assignment, incorporating answer caching and 

error messages reduced accuracy (101 questions classified correctly). The lack of 

sufficient data to model different kinds of compiler errors is probably the cause of a drop 

in accuracy when answer caching and error messages are incorporated. Because 

compiler errors are being reduced to a single term, several of them are necessary to boost 

the compiler error terms to a heavy enough weight to influence the similarity algorithm. 

Excluding error messages and answer caching returns the classification algorithm to a 

domain independent state. Compiler error messages are a source of data that are only 

relevant in the computer science domain. By contrast, natural language and assignment 

numbers are a data source that is available in virtually every educational domain. 

To facilitate comparison in the bar charts, we reuse the same denominators, 411 

total questions and 268 repetitive questions. When only comparing questions from the 

same assignment, however, the number of repetitive questions is actually smaller (204), 

and that denominator gives a classification accuracy of 56% of repetitive questions. 

1.7 Summary 

The central question of the dissertation is "Can domain knowledge and 

educational context improve classification of the questions that students ask in a novice 

programming class?" Using natural language and cosine similarity as a non-trivial 

baseline, I answer this question in the affirmative by improving accuracy by using 
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domain knowledge (processed compiler error messages) and educational context 

(assignment number). I replicate previous results showing that answer caching can 

improve accuracy by 1-3% and extend previous work on answer caching by achieving 

similar improvement on a more difficult dataset with ecologically valid tutorial dialogue. 

Using domain knowledge, answer caching, and educational context, the algorithm 

can classify between 23% and 56% of the questions. Using just natural language, the 

algorithm can classify 96 questions or 35% of the repetitive questions and 23% the total 

questions. Using processed compiler error messages, the algorithm can classify 104 

questions or 25% of the total questions and 39% of the repetitive questions. When 

disaggegating by assignment, the algorithm can classify 113 questions correctly or 28% 

of total questions and 56% of repetitive questions. 

I also demonstrate that an online learning framework is a viable alternative for an 

automatic question answering system because it can classify almost as many questions as 

a similar algorithm in a batched setting. Many modern intelligent tutoring systems 

require extensive knowledge engineering and/or they must be or trained with data that 

has been harvested from a deployed system. The disadvantages to the former alternative 

are that the system designers must try to foresee every question that a student could ask, 

and the cost of engineering knowledge for the system is typically high. The disadvantage 

to the latter alternative is that the system does not benefit students as much in the year 

while data are being collected. The online learning framework reduces both of these 

disadvantages by waiting until a student has asked a question to engineer knowledge, and 
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then potentially exploiting that knowledge immediately after it has been added to the 

system. 

1.8 Roadmap 

This chapter has proposed that a system to automatically answer the questions that 

students ask has the potential to reduce the rapidly rising costs of a college education, and 

it has given a brief overview of the research; the remainder of the dissertation gives much 

more technical detail. Chapter 2 discusses related research from the fields of information 

retrieval, computer science education, and intelligent tutoring. Chapter 3 describes the 

software system that was used to collect ecologically valid data and it quantitatively and 

qualitatively describes the data. Chapter 4 presents the main analysis showing that 

domain knowledge and educational context can improve the classification of student 

questions as well as additional analyses that compare the results to standardized question 

answering results and argue that mine are comparable, and better for my dataset. Chapter 

5 explains why some analyses were omitted and presents additional preliminary analyses 

with the goal of predicting how training data obtained in the first semester might be 

exploited to improve accuracy in future semesters. Chapter 6 describes why the data are 

an important contribution, including a discussion of why this type of data is difficult to 

collect and a description of the dataset itself. Chapter 7 explores limitations of the 

presented research and opportunities for future work; it also reiterates the contributions of 

the dissertation and concludes. 
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CHAPTER 2 

PRIOR WORK 

The research described in this dissertation is broadly interdisciplinary, drawing on 

ideas from both commercial and academic systems for information retrieval, computer 

science education, and intelligent tutoring systems. This chapter will focus on laying the 

intellectual foundation necessary to understand how research from those fields has 

influenced my work. This chapter examines three threads of prior work, one on 

information retrieval and automated question answering, one on learning to program in 

Java, and one on intelligent tutoring systems with an emphasis on relevant work on tutorial 

dialog. 

This section begins with a discussion of the more widely recognized commercial 

information retrieval systems, and then it discusses a number of academic systems. Some 

of the academic systems are less well known but are important for their contributions in the 

areas of information retrieval, computer science education, and intelligent tutoring. 

2.1 Information Retrieval 

2.1.1 Industrial Solutions 

Google has created the world's most successful search engine. The founders 

viewed the Internet as a graph, and leveraged the linking structure to design an algorithm to 
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rank the relative value of the information in the graph [19]. This is one of the most 

recognized examples of using information beyond the text in a document to improve 

classification. Unfortunately, even Google requires keywords, words that users must 

supply to unlock the information of the internet. For savvy users, providing keywords is 

generally not problematic, but for novices and students who are just acquiring a technical 

vocabulary, even a search engine as good as Google can be a challenge to use. 

Before the Internet was widely used, Microsoft created extensive context-sensitive 

help for people using their products. Their help system includes avatars to answer 

questions and perform keyword searches as well as automated infrastructure that 

recognizes common tasks. For example, when the user begins a common task such as 

writing a letter, an automated avatar offers to assist [12]. Microsoft's commitment to 

improving software usability is admirable, but it is limited in scope to their proprietary 

products. 

How May I Help You is a commercially successful, partially automated system for 

routing telephone calls and resolving help requests [33]. A semi-autonomous model is well-

suited for a question answering system in which the majority of the questions fall into a few 

major categories. In such a system, answers to the majority of questions can easily be 

selected automatically, and the small number of questions for which an automated response 

is not practical can be handled by humans. This dissertation proposes that a semi-

autonomous model would also be good for answering student questions. 
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2.1.2 Question Answering- The TREC Track 

Many more information retrieval systems have been the subject of academic 

research. Work in the information retrieval community has generally focused on the query 

or perhaps a question as the articulation of a user's information needs. A typical web query 

is between two and three words in length (e.g.,[14]). Although a typical factoid question is 

longer than two or three words, it is also quite short compared to other sources of language 

(e.g. documents, papers, etc.) used in natural language processing. The shortness of these 

articulations of a user's information needs can be problematic for statistical methods that 

rely on reasonably large numbers to compensate for noisy data. 

A major meeting for the information retrieval community is the Text REtrieval 

Conference (TREC). The TREC competition solicits entries from various commercial and 

academic entities for a variety of information retrieval tasks. Of particular interest is the 

Question Answering Track, which ran between 1999 and 2007. A typical system entered 

in the corresponding contest might consist of several major software modules organized 

into a pipeline. One module might process the question, perhaps matching it against a 

template or reducing it to keywords in order to build a query. The next module would use 

the query as input and retrieve a batch of relevant documents. The third module would 

extract answers from the documents, and the fourth module would rank the resulting 

answers. Each annual contest usually attracted between 10 and 30 submissions from 

various academic and industrial groups working on the question answering problem. 

A typical Question Answering Track task consisted of several hundred questions 

with the vast majority being factoid questions, such as "What is the capital of Texas?" The 
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remaining questions might be variants of the original question, request a list of data, not 

have an answer in the supplied corpus (indicated by Nil in Table 2.1), or involve some 

other minor variation of research interest. To keep the contest competitive, the question 

text as well as the text that was mined for answers came from increasingly difficult corpora 

each year, including blogs in one of the final years of the contest. Later versions of the 

TREC competition utilized more difficult datasets and more difficult tasks. Consequently, 

the scores in later years of the competition were often lower (e.g., [27]), and comparing 

TREC results across years is like comparing apples and oranges. Table 2.1 lists some of 

the major features of the TREC competition each year between 1999 and 2007. 

Typically, the TREC competition requires each group to compute a variety of 

statistics describing their system for a given test set of data. One of these statistics is the F-

score, a weighted average between precision (how many of the retrieved documents are 

relevant) and recall (how many of the relevant documents are retrieved). Another statistic 

is accuracy, the fraction of questions for which the system can return a correct answer. 

Sometimes the systems are evaluated using a measure called Reciprocal Answer Rank, 

Table 2.1. TREC competition features 

1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 

Factoid questions (200),long+short answers 
User questions (500+ 193 variants) 
Nil answer, List task, context task 
Answers instead of snippets, confidence score 
Factoid, definition, lists, F-score 
Series of questions 
Series of Q's, document ranking, relationship 
Series of Q's, ciQA 
Series of Q's, ciQA, blogs 
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which allows a system to list several possible answers and receive more credit for listing 

the correct answer earlier in the list. Based on the answers that a system provides, 

additional scores are computed to rank the various question answering systems. 

Within the question answering task, the easiest part is answering the "factoid" 

questions, and the best systems report answering just over half of these correctly 

(MRR=0.58). The other systems report accuracy substantially lower (MRR <0.5), and 

overall accuracy of all question types is also substantially lower [81]. . These results 

suggest that providing automated answers to questions is a difficult task for computers, 

even when the question is well-articulated by an expert and the corpus contains cohesive, 

coherent text with an appropriate answer. 

Of all the TREC contests in the question answering track, the contest in TREC 9 

(2000) is particularly related to my research. In that contest, the "question(s) were taken 

from a log of questions submitted to the Encarta system made available by Microsoft plus 

questions derived from an Excite query log" as well as "questions that were created by the 

assessors to be semantically identical but syntactically different from a question already in 

the test set" [81]. An examination of the test set suggests that 193 of the 693 questions (or 

more than 25%) fall into this category of questions that are semantically identical but 

syntactically different from a previous question in the test set. 

Of the papers in the corresponding SIGIR conference (2003), one specifically 

mentions exploiting a technique called "answer caching" to provide answers to some of 

these questions. Answer caching is a technique that matches an incoming question to a 

semantically similar previous question or question category in order to recycle an answer 
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[58]. In the TREC contest referenced in the SIGIR paper, the questions were 

syntactically different, but lexically very similar. The SIGIR paper reports that the 

technique accounts for a modest 1-3% improvement which seems small considering that 

this technique alone could theoretically answer approximately a quarter of the questions. 

One weakness in the approach outlined in that paper is the measurement of similarity 

which relied on fairly strict lexical similarities, and the approach did not utilize term 

weightings in calculating similarity. 

Unfortunately, the TREC competition does not have a track for computing the 

answer to student questions. Student questions are more challenging than typical factoid 

questions for several reasons. First, student questions are often incomplete and poorly 

articulated. For example, a student might simply say "I'm stuck." Second, students often 

use colloquial language when requesting help. For example, they frequently use polite 

words such as please and thank you as well as slang words in their requests; typos, spelling 

errors, and grammar errors also indicate the colloquial nature of their typed text. Third, 

students frequently ask free form questions that are difficult to classify with a traditional 

grammar or information extraction frame. Fourth, student questions are often deeply 

rooted in a complex educational context that includes implied information about the course, 

text, instructor, assignments and various other details. 

2.1.3 Passage Retrieval 

One of the major limitations of the research on answering factoid questions is a 

focus on finding an answer, usually a few words or perhaps a sentence long. However, 
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many users generate queries suggesting a need for longer answers. One alternative to 

satisfy these users is called passage retrieval. One approach to passage retrieval involves 

evaluating the similarity of the document to the query, and then finding the most relevant 

passages in sufficiently similar documents [69]. The ideal length of a passage appears to 

depend on the corpus from which it is extracted; however, 200-250 words seems to be a 

reasonable passage length for most topics [25]. These papers found that retrieval was more 

effective when documents were selected first, and then passages were selected from 

relevant documents. Another approach found relevant passages and then used the passages 

to identify relevant documents, and argued that for at least some corpora that approach was 

more effective [47]. 

2.1.4 Frequently Asked Question (FAQ) Question Answering Systems 

A weakness of traditional statistical retrieval is the inability to leverage structural 

information. FAQ finding attempts to leverage the structural information inherent in a 

corpus of FAQ documents consisting of questions and answers. An early system achieved 

shallow language understanding with keyword matching and multiple lexicons[70]. 

Another system , the FAQ finder system, utilized of shallow parsing and marker passing 

[38]. To improve upon previous work, one group combined the statistical information in 

the vectors with semantic information gleaned from WordNet [72]. More recent work has 

attempted to summarize FAQ's based on a user query [15]. Query logs have also been 

used to cluster similar questions and smooth models of question types, thus reducing the 

need to engineer knowledge [48]. 
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2.2 Classifying Questions from Novice Programmers 

Several classification schemes exist for classifying student questions and source 

code in introductory computer science, but many of these are too broad to be useful for 

classifying questions and giving automated answers. Garner, Haden, and Robins suggest a 

number of broad topical categories (e.g., loops or arrays) and present an analysis showing 

that the number of questions per topic varies week by week, with the majority of questions 

often clustered around one or two topics each week. They note that they were "not aware of 

any predefined criteria for validating any particular taxonomy of problem descriptions" so 

they provide a fairly detailed list of 27 categories that they used in the appendix of their 

paper [32, 64]. Kim, Shaw, Chen, and Herbert have demonstrated that approximately 

80% of the speech acts on a class discussion board for an operating systems class are 

questions or answers, and the vast majority of those questions are about assignments and 

exams for the class; they suggest that the chapters of a textbook could be the foundation for 

an ontology for a computer science course [49]. Baffes and Mooney suggest two broad 

categories of students' problems: incomplete student work and incorrect student work [10]. 

Spohrer, Soloway, and Pope list four major categories of novice programming errors 

including missing code, malformed code, spurious code, and misplaced code [74]. 

Unfortunately, all of these various classification schemes are too course grained to 

be useful for answering student questions. Most novice programming students recognize 

when they ask a question that they are missing code and/or they have malformed code, and 

many students recognize that they need help with a particular topic. Thus, correctly 

assigning a question to such a category does not increase a student's knowledge, nor does it 



www.manaraa.com

22 
close the gap in knowledge that triggered the question. One conspicuously absent 

classification scheme separates questions into categories based on whether or not the 

accompanying code compiles. Extensive prior work has examined both of these categories 

independently, and the remainder of this section gives substantial technical detail on prior 

work classifying Java compiler errors as well as a briefer overview of systems that aim to 

help novice Java programmers when their program does compile, e.g., with system design 

and run-time errors. 

2.2.1 Classifying Compiler Errors 

Several recent projects have analyzed compiler errors made by students learning to 

program in Java. Typically, these papers involve a quantitative analysis of hundreds or 

thousands of compiler errors made by novice Java programmers during a study period as 

short as a month or two or as long as a semester. 

2.2.1.1 Gauntlet 

The Gauntlet project was launched by instructors at West Point. An early version of 

the Gauntlet system ran as a web application, and a later version was integrated with the 

local IDE. Both versions logged all the compiler errors for a version of student source code, 

and both provided additional feedback to help students fix their problems. Because every 

freshman at West Point is required to take an introductory programming class, the project 

was able to collect substantial amounts of data. The system collected a total of 559,419 

errors in just one semester. The dataset is somewhat unusual because the majority of the 
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students were not planning to major in Computer Science. Collectively, the 10 most 

common compiler errors account for 51.8% of the errors collected [30, 41]; they are listed 

below: 

• Cannot resolve symbol 
• ; expected 
• Illegal start of expression 
• Class or interface expected 
• <identifier> expected 
• ) expected 
• Incompatible types 
• Int 
• Not a statements 
• } expected 

2.2.1.2 Blue J 

Matthew Jadud studied novice compilation behavior in the context of BlueJ, a Java 

interactive development environment (IDE) for novice programmers. BlueJ only displays 

and logs the first error that the compiler finds. In an introductory programming class of 

206 students, 63 agreed to participate in the study of logged compiler errors during the 

weekly lab sections. A total of 1926 errors was logged belonging to 42 different types. Of 

these errors, more than half belonged to the five most common errors including missing 

semicolons (18%), unknown symbol variable (12%), bracket expected (12%), illegal start 

of expression (9%), and unknown symbol: class (7%). The next five most common error 

categories include unknown method (7%), incompatible types (4%), class-or-interface-

expected (4%), identifier expected (4%), class expected (3%). Collectively, these ten error 

types represent approximately 80% of the errors in this set [42,43]. 
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Suzanne Thompson studied compilation errors from CS2 students using Eclipse 

and Java with the GILD plugin. Out of 115 students in the class, 10 agreed to participate in 

the study, and a total of 3535 error messages belonging to 88 compiler message types were 

identified. Of these errors, more than half belonged to the top five error categories. The top 

10 categories are listed below: 

• UndefmedName (20.2%) 

• TypeMismatch (8.8%) 
• UndefinedMethod (8.5%) 
• ParsingErrorlnsertToComplete (8.4%) 
• ShouldReturnValue (4.9%) 
• UndefmedType (4.8%) 
• ParsingErrorDeleteToken (4.1 %) 
• PakagelsNotExpectedPackage ( 3.2%) 
• UndefmedConstructor (2.9%) 

• ParameterMismatch (2.6%) 

Collectively, these 10 errors represent approximately two thirds of the errors in this set 

[76]. 

2.2.1.4 Jikes 

Similar research carried out by some researchers using JCreator and Jikes (an open 

source compiler project that appears to produce error messages that are a little bit different 

from the javac compiler) included all of the assignments over the course of a module 

delivered to 192 students. In total 108,652 errors were collected. The authors report 226 

distinct semantic messages with 6 errors (conditional, loop, method, array, class, string) 

constituting more than 50% of the errors in each concept [2]. 
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2.2.1.5 Summary 

In summary, several different groups have independently studied novice compiler 

errors and concluded that majority of the bugs come from a few major categories. 

However, as even the authors acknowledge, it may be somewhat misleading to suggest that 

a single error message category has a single cause or that the cause of the error message is 

adequately conveyed by the error message. For example, a Gauntlet paper notes: 

"[The] same message (cannot find symbol) appears whenever one of the following three 

errors occur: 

• The variable is declared properly, but is never initialized, and then is used. 
• The variable is misspelled when it is used. 
• The variable is declared, but its initialization occurs inside of a conditional block and is 
used outside of that conditional block" [30]. 

Additionally, a BlueJ paper spends approximately one fourth of the paper 

describing how one student spent approximately one fourth of an hour unsuccessfully 

attempting to resolve a missing semicolon error [43]. 

2.2.2 Run Time Errors 

2.2.2.1 Propel 

Other prior work has examined novice programming errors that occur when code 

compiles, for example those errors that occur before any code is written or alternatively 

when a program compiles and runs. ProPL is a natural language tutorial dialogue to help 

students design and plan their program [53]. ProPL demonstrated that natural language 

technology is effective in helping students learn how to compose Java programs, but did 
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not attempt to answer student questions, and it was limited in scope to one or two 

programming problems. 

2.2.2.2 FaultFinder 

At the other end of the programming pipeline, the FaultFinder system utilized a 

combination of scripts and machine learning techniques to perform static analysis on 

simple programs and identify run-time errors. The system was able to use a combination of 

machine learning, program slicing, and program comparison to automatically identify 

many errors that novices made. Unfortunately, the FaultFinder system depends on 

compiled student code, and it only identifies bugs [45]. 

2.2.2.3 FindBugs 

Another system, FindBugs focused on more advanced programming issues such as 

threading and null pointer dereferencing. The FindBugs system contained a set of patterns 

that represented programming language idioms that were frequently associated with bugs. 

The system was able to automatically identify many bugs, but most of the bugs that it 

identified were beyond the scope of a novice programming class [40]. 

2.2.2.4 Summary 

Like many of the preceding projects, the ultimate goal of this research is to provide 

quality automated help to novice programmers. Unfortunately, this dissertation will not 

actually bridge the gap of providing quality automated answers, but it does extend the prior 
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work on question classification by providing a deeper analysis of the source of the bug 

instead of looking only at compiler or program output. 

2.3 Tutorial Dialog 

This section considers two general periods of progress in the general area of 

intelligent tutoring with extra emphasis on contributions related to tutorial dialog. The first 

period highlights historical contributions of early intelligent tutoring systems beginning 

with Jaime Carbonell's SCHOLAR and continuing through the seventies and eighties. The 

second period considers work done between roughly 1990 and the present, with an 

emphasis on work done more recently. 

2.3.1 Early Intelligent Tutoring Work 

Intelligent tutoring first became an independent research area in the 1970s and 

1980s. Early systems from that time period were extremely limited by memory, 

constraints, a lack of networking technology, and limited user interface choices (frequently 

text-only). Consequently, many of the contributions of these early systems are more 

theoretical in nature. They are worthy of review because many of the basic techniques 

introduced by these systems are still in use today, and the theoretical justification for this 

general area of research remains valid and popular in modern research. 
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2.3.1.1 SCHOLAR 

Summaries of early progress in intelligent tutorial dialog typically begin with a 

discussion of Jaime Carbonell's dissertation on SCHOLAR [53, 83] . SCHOLAR was a 

mixed-initiative tutorial dialogue system in which a student could pose questions to the 

system or the system could ask questions of the student [26]. The dialogue was based upon 

a semantic network, and the system could generate questions and evaluate answers by 

traversing the network. Wenger provides an overview of the system and provides some 

commentary; his writings include example dialog for SCHOLAR that occurs in the general 

domain of geography [83]. From a modern perspective, one of the major shortcomings of 

SCHOLAR is that it was not used by students. 

2.3.1.2 WHY 

Another noteworthy early system called WHY conducted tutorial dialog in the 

domain of rainfall process. The WHY system incorporated a Socratic strategy for 

advancing the dialogue [75], and it inspired future work by other researchers on a system 

called WHY-2 [36]. The scripts of the WHY system were inadequate to pursue global 

goals such as pervasive misconceptions or extended explanations of complex concepts. 

2.3.1.3 SOPHIE 

The SOPHIE projects (I-III) examined tutorial dialogue in conjunction with a 

tutoring system for designing electrical circuits [21]. The designers outlined the following 

four criteria for evaluating instructional interfaces [24]: 
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• Efficiency (the student should not have to wait) 
• Habitability (the system should accommodate various phrasings) 
• Robustness with ambiguities (the system should not expect independent systems to 

be unambiguous) 
• Self-tutoring (the system should gracefully handle unacceptable inputs while 

teaching the student how to properly interact with itself) 

The SOPHIE projects were also the first to consider tutorial dialog as a component of a 

larger intelligent tutoring process with other components, and they were the first to utilize 

information external to the dialog (e.g., from a game) in making dialog decisions. Again, 

many of the limitations of the system can be linked to representation. Specifically, some of 

the conceptual knowledge was difficult to represent with existing data structures and the 

system frequently fumbled when more than one error occurred in the circuit. 

2.3.1.4 BUGGY 

BUGGY, DEBUGGY, and IDEBUGGY are systems that helped students learn 

subtraction by exploiting a model of observable bugs. From a computational standpoint, 

they represent a major shift in tutoring systems towards representing learning and tutorial 

actions in a procedural network. BUGGY utilized an extensive procedural network to 

model subtraction with subprocedures [20]. DEBUGGY used the model introduced by 

BUGGY to diagnose student problems, and IDEBUGGY diagnosed student problems 

interactively [23]. Presumably data from these systems contributed to the REPAIR [22] 

and STEP [78] theories that introduce a generative model of bugs in terms of an underlying 

cognitive model. Representing tutoring and learning in a procedural network was an 

important advancement that eventually led to model tracing tutors and step tutoring. 
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2.3.1.5 MENO AND PROUST 

Programming was also a popular domain for intelligent tutoring during this time 

period. At the University of Massachusetts Amherst, the MENO project was an attempt to 

build an intelligent tutoring system for Pascal. MENO compared student program parse 

trees to template program parse trees. Differences in the parse trees were mapped to 

misconceptions in a database, allowing MENO to automatically retrieve misconceptions if 

the parse tree appeared to be incorrect [83]. Unfortunately, the complexity and variability 

of the student programs exceeded the expectations of the system. MENO-II reduced the 

size of the problem space by specializing in analyzing loops and variables [71], and 

MENO-TUTOR focused on remedial dialogue [89]. PROUST was another spin-off project 

that viewed program design as a hierarchical process consisting of agendas, goals, and 

code. PROUST ran on syntactically correct code and for one programming problem, it 

could comprehend 81% of questions, and detect 78% of the 795 total bugs. However, on a 

more complex problem, the system could only detect 64% of the bugs, and in both cases, a 

fair number of false alarms were generated [46]. 

2.3.1.6 LISP Tutor and ACT 

Meanwhile, at Carnegie Mellon University, a model tracing tutor called the LISP 

tutor help students learn the Lisp programming language while also serving as a test bed for 

John Anderson's ACT theory. John Anderson's involvement helped to ensure that early 

versions of the LISP tutor had a solid cognitive science foundation with each tutorial and 

learning action linked to specific fundamental behaviors in human learning [7, 8]. Many of 
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the lessons learned from the process of creating the LISP tutor eventually affected the 

creation of the cognitive tutors, a set of intelligent tutoring systems heavily influenced by 

cognitive science. Early versions of the cognitive tutors also linked learning and tutoring 

actions to behaviors of the human brain, but more recent versions have focused on learning 

gains, instructional science, and human-computer interaction and the focus has shifted 

away from cognitive science. 

2.3.1.7 PEA 

At Edinburgh, an independent project called the PEA (Program Enhancement 

Advisor) provided intelligent tutoring on Lisp programming style. The PEA project is 

relevant to this research because it focused specifically on programming style, an area that 

seems to be the topic of many novice programming questions [57]. Programming style is 

an interesting area for intelligent tutoring research because the domain consists of both 

objective elements and subjective elements, and subjective elements present potential 

problems for adoption by instructors with different philosophies than the tutoring system 

designers. The PEA project appears to not have progressed to the point where this became 

a problem. Probably the primary reason that the various Lisp tutors described in this 

section are not used today is that the Lisp programming language lost its luster. 

2.3.1.8 Summary 

Early intelligent tutoring research can be characterized as largely consisting of 

proof-of-concept systems that primarily demonstrated the capability of the computer in that 
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time period. Although some of the systems were used by humans (e.g., SOPHIE was 

used for a semester), they were rarely used for actual instruction. In 1984, Benjamin 

Bloom published a paper arguing that a two sigma difference separated one-to-one (human) 

tutoring and classroom instruction [16]. He further stated that one-to-one human tutoring 

was expensive and claimed that the challenge was to make it cost-effective. Believing that 

challenge was one that computers could solve and recognizing a need for more empirical 

studies, the intelligent tutoring research community began a new, more empirical era of 

research. 

2.3.2 Intelligent Tutoring Modern Work 

Modern intelligent tutoring research has seen the rise of several different tutoring 

systems that are currently deployed in classroom settings, and many of these systems have 

made at least partial progress on the two sigma challenge. The Cognitive Tutor Algebra 

Tutor has achieved a one sigma improvement over traditional classroom instruction in the 

domain of Algebra [51]. The Andes Tutor has achieved similar gains in the Physics 

domain, and they argue that they are the gold standard for modern intelligent tutoring 

systems [80]. Those gains are based on customized assessments. Using standardized 

assessments, the systems report smaller gains of 0.3 (Algebra) and 0.25 (Andes) [80]. The 

The Project LISTEN group has achieved similar statistically significant effect sizes for 

their reading tutor that listens to children read aloud [55]. These systems have generally 

bypassed the problem of poorly articulated student language by focusing on "step tutoring" 

as opposed to "natural [language] tutoring" [77]. The general approach to step tutoring 
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consists of constraining the size of the information space that the system covers (e.g. a 

single algebra problem [51], a single physics problem [80], or a sentence to be read aloud 

[55]), dividing each problem into a set of skills or steps (usually modeled in a procedural 

network), and creating interventions or help messages for each skill, ending with a "bottom 

out hint" or answer for each step. 

In modern intelligent tutoring research, two reasons are commonly cited for 

pursuing natural language tutoring. One popular reason is that natural language may help 

students to learn deeply and avoid shallow learning [36]. Others have suggested that 

natural language tutoring might close the gap between existing tutoring systems that report 

a one sigma improvement over classroom instruction and expert human tutors that are 

capable of a two sigma improvement [60]. Tutorial dialog has played both a peripheral 

role, as a plug-in to an existing tutoring system, and a central role, as the major focus of the 

tutoring system. 

2.3.2.1 Geometry Explanation Tutor 

Some systems have focused specifically on helping students to articulate their 

reasoning, as a plug-in module. For example, the Geometry Explanation Tutor is a plug-in 

to the Geometry Tutor that provides feedback on natural language justifications for steps in 

a geometry proof [5]. The Geometry Explanation Tutor was able to respond to and process 

student language well enough to provide some tutorial interventions^], but it did not 

produce learning gains [4]. 
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2.3.2.2 CycleTalk 

Another example of a plug-in module is CycleTalk, a system that facilitated Wizard 

of Oz studies in the context of the CyclePad system that tutored students in the domain of 

thermodynamics [67]. The Wizard-of-Oz studies that the CycleTalk system facilitated 

allowed experimenters to conduct tutorial dialog with students. The collected dialogs 

reveal common characteristics of student dialog such as abbreviations, misspellings, and 

colloquial language. However, the presence of a human Wizard meant that the system 

never really had to classify student language or utterances or provide solutions to other 

technical challenges in dealing with student dialog. 

2.3.2.3 Atlas 

Atlas is a generic dialog plug-in for model tracing tutors. Model tracing tutors are 

intelligent tutoring systems that trace a graph of student skills, with edges representing the 

students' input and nodes representing the student's knowledge state. Atlas has two major 

components that can be extended with domain-specific knowledge [66]. The first 

component, the Atlas Planning Environment (APE) takes care of dialog management issues 

and plans tutorial strategies while monitoring the student's progress with model tracing 

techniques. The second component CARMEL takes care of the natural language 

understanding with a system that prefers well-formed, well-spelled dialog, but allows 

relaxations to accommodate the more colloquial language that students tend to use. A 

separate tool facilitates authoring Knowledge Construction Dialogues (KCD's), the domain 

specific pieces of knowledge that Atlas uses in constructing its dialogs. The Atlas system 
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was originally implemented as a plug-in for the Andes Physics tutoring system, and the 

system designers were able to show a 0.9 sigma improvement in learning gains over Andes 

without natural language tutoring [36]. Atlas later produced a couple of spin-off projects. 

One spin-off, WHY2, demonstrated the domain-independence of the system by deploying 

another plug-in in a different tutoring system (AutoTutor) in a different domain (computer 

literacy), and it explored opportunities to leverage the best aspects of both statistical 

language processing and symbolic language processing. 

2.3.2.4 AutoTutor 

The AutoTutor project, in contrast, considers dialogue to be an essential part of the 

tutoring process, and it has achieved a one half sigma improvement for their system that 

teaches computer literacy [36]. Generally, the AutoTutor project relies on statistical 

language processing techniques, treating student dialog as a bag of words and throwing 

away the syntactic information contained in the dialog. The AutoTutor project has 

researched a number of different analytical approaches for processing student language in 

response to tutorial prompts and published relevant papers. The first publication simply 

demonstrated that an information retrieval technique called Latent Semantic Analysis 

(LSA) [52] with natural language was a viable approach to selecting text for intelligent 

tutoring dialog with human raters as the gold standard [86]. Later, the same research group 

tuned the parameters for LSA and found slightly stronger performance by altering features 

such as the number of dimensions in the matrix and the amount of training data [87]. In 

another variation, the research group compared increasingly simple models, including 
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cosine similarity and concluding with a keyword model. The keyword model counts the 

number of words found in both a current question c and previous question p and divides by 

the maximum number of terms in either question. The much simpler keyword model is 

within 20% of the performance of the full LSA model for their dataset [85]. This line of 

research is also described in greater depth in a journal article [37]. 

2.3.2.5 PedaBot 

The PedaBot project led to a similar line of research with a few fundamental 

differences. First, the PedaBot project aims to match student discussions to similar 

previous student discussion [50]. Because students are notoriously bad at articulating their 

discussion points, matching student input to student input is a more difficult problem than 

matching student input to expert-provided input. Second, although the PedaBot approach 

does not require expert-provided answers, it does require a list of expert-provided technical 

terms. The PedaBot project avoids generating these manually by automatically extracting 

them from a textbook or other authoritative, expert provided resource [50]. Like the 

AutoTutor group, the PedaBot group has examined various techniques for calculating 

similarity of the various discussions in the system, with the focus on LSA and cosine 

similarity [50]. Together, these groups have demonstrated convincingly that LSA and 

cosine similarity are a promising direction for processing tutorial dialogue. 

The general approach still has a number of serious weaknesses. First, the research 

results are not as compelling as they could be. The AutoTutor group reports correlations 

with r < 0.5 [85], and the PedaBot group reports finding discussions of "moderate 



www.manaraa.com

37 
relevance" or discussions that rank 3 on a 4 point Likert scale [50]. Second, the 

approaches outlined require significant expert-authored resources, either in the form of a 

list of ideal answers in the case of AutoTutor or in the form of a list of technical terms for 

PedaBot, and matching these technical terms is critical to both approaches. However, 

students (especially novice programming students), often do not use technical vocabulary 

in articulating questions. Third, the approaches seem to rely on students being quite 

verbose in their interactions with the system. Literature in the information retrieval 

community has shown that longer queries are often more effective and robust [14], and 

LSA is known to be most effective with between 300 and 500 terms in the final matrix 

(after the size is reduced by the principle component analysis) [18, 85]. However, students 

(especially novice programming students) are not verbose when asking questions. 
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DATA 

3.1 Historical Background 

When the original research project was designed, Joe Zachary taught Computer 

Science 1 at the University of Utah. In his course, he utilized a Java applet that he had 

written called the TA Call Queue where students entered their name and the location of 

their lab machine. This information then appeared in the TA interface, and a human TA 

was required to walk over to the student's machine in order to help them. The TA Call 

Queue did not allow students to type natural language describing their help request, help 

students obtain remote assistance, or log data to the server. To facilitate collecting data 

for my research and provide functionality not available with the TA Call Queue, I 

designed a new piece of software called the Virtual Teaching Assistant (VTA) system 

that logged student questions and allowed for remote feedback. With both systems, the 

human TAs periodically circulated through the lab and prompted the students to ask 

questions because some students are reluctant to ask questions without prompting. 

3.2 System Architecture Overview 

The VTA system consists of four major software components plus a database. All 

four software components are implemented in Java. Two of the software components are 
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client interfaces, one for students and another for TAs. Another major component 

performs various analytical procedures on the data as described in detail in the next 

chapter. The final major component is a set of Java servlets that run on a web server as 

middleware, processing data from the clients and storing it in a database. 

The Virtual Teaching Assistant student software works as follows. The student 

decides to ask a question and launches the Virtual TA software by clicking on a button on 

the class webpage. The application already knows the student login, location, and current 

assignment number. However, the student can override that information. For example, 

students may choose indicate that they are using a personal laptop in the college 

computer lab or use their first name instead of their login name. The student can fill in 

the name of the Java method and class that they believe is relevant to their question, and 

any natural language they need to express their question. Additionally, the student must 

attach their source code folder using a standard open file dialog prior to submitting their 

question. When the student clicks the send button, the client connects to a server, logs 

the information it has collected from the student to a database, and passes the question to 

a human TA on duty via the TA client interface. Figure 3.1 shows the student interface. 

The human TA sees the question, source code, and other educational context in a 

TA interface. In the TA interface, the upper left hand area displays the list of students 

who have questions on the queue; the lower left hand area lists the source code files 

associated with the selected student. The center area displays the student source code. 

The third panel to the right displays the student form and provides an area for the TA to 

type a response and/or an answer category. An answer category corresponds to a group 
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Figure 3.1. Student Interface 



www.manaraa.com

41 
of questions that could be answered with the same answer. To facilitate the 

assignment of questions to answer categories, the TA interface has a button panel in the 

right-most pane with one button for each answer category for the current assignment; the 

TA can also add a new answer category if the current question does not fit into an 

existing category. Initially, the button panel for an assignment was empty, since no prior 

research existed to suggest what kinds of questions students might ask. However, as the 

students asked questions about an assignment, the number of labeled buttons for that 

assignment grew. The human TA can answer the question in person by walking to the 

student's machine in the computer lab, or the human TA can type a text response to the 

student that will appear in the student's client software in the lower text area. To remove 

the question from the queue, the TA must assign the question to an answer category. The 

answer category chosen by the human TA is logged to a database along with any text that 

the human TA has provided for the student. The TA interface is shown in Figure 3.2. 

A set of middleware Java servlets connects the Student Interface and the TA 

Interface. These servlets transport data between the two interfaces, and they log data to 

the database. Currently, they are separate from the analysis software described in the 

next chapter, but they are designed to facilitate easy integration in the future when it will 

be possible to answer some questions automatically with the VTA system. The database 

stores the questions, the answers, and their educational context. Educational context 

includes information such the student's name/login, location, course, directory containing 

the student's source code, time the question was asked, time the question was answered, 

responding TA, and any other details relating to the question and the answer. 
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Figure 3.2. TA Interface 
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3.3 Participants 

The students who used the Virtual Teaching Assistant system were enrolled in 

Introduction to Computer Science 1 (CS1410) at the University of Utah. Approximately 

150-160 students enroll in Computer Science 1 each fall, and approximately 80-90 

students enroll in Computer Science 1 each spring. Most students in Computer Science 1 

at the University of Utah are age 18-22, but there are also a few nontraditional students, 

such as students from local high schools or adults who have returned to school later in 

life. Computer Science 1 is the first required computer science course for computer 

science majors, and it is a gatekeeper course with a strong emphasis on the Java 

programming language as well as the traditionally long hours for novice programmers 

and the typically high dropout, failure, and withdrawal rates. The majority of students 

who take Computer Science 1 hope to major in computer science or a related field, but 

they must pass that class along with three others with sufficiently high grades to attain 

official status as a computer science major. 

While the software was being designed, one of Joe Zachary's PhD students, Peter 

Jensen began teaching Computer Science 1. The course evolved substantially during his 

early years of teaching it. Peter's changes covered many aspects of the course from 

assignments, to the textbook, to the choice of integrated development environment (IDE). 

In this evolving educational environment, the data collection portion of the VTA software 

system was deployed three times. The first deployment occurred in Fall Semester of 

2007 while the students were working on the ninth assignment. During this deployment, 

a small dataset of 71 questions was collected, but the data in that dataset was excluded 
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because the dataset was small, and the system was behaving unreliably. Unfortunately, 

resource leakage problems internal to the system (e.g., not closing files and buffers) 

caused the system to crash the server once or twice, and the system was taken offline for 

code reviews to improve stability. The data from that deployment are generally excluded 

unless specifically noted otherwise in the remainder of the dissertation. The second 

deployment occurred during Spring 2008 for assignments 3-12, and the majority of the 

data described in this dissertation come from that deployment. That deployment was 

stable and resulted in a dataset of approximately 300 questions included in the analysis. 

The third and final deployment occurred during Fall 2008 for the first four assignments 

and resulted in a dataset of approximately 100 questions included in the analysis; most of 

the data in that deployment comes from the third and fourth assignment. Assignments 

from Fall 2008 are indicated with an extra leading 0 between the assignment and the 

number, as in assignment03 and assignment04. 

In the middle of the Fall 2008 semester, the instructor curtailed usage of the 

system for several reasons. First, he believed that students were not asking as many 

questions as they did with the TA Call Queue. Second, he believed that students did not 

like using the VTA system, although anecdotal evidence suggests that at least some 

students preferred the VTA system, especially because it allowed them to ask questions 

remotely. Third, he changed the primary IDE that students used in the course from BlueJ 

to Eclipse, and this switch mitigated some of the primary advantages of the VTA system 

because it made it much harder for TAs to remotely inspect students' source code. 
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3.4 Data Cleansing 

When the data logging software was designed, every effort was made to facilitate 

rapid data analysis. For example, the software automatically prompted the TAs to enter 

the assignment name and number. Then the software automatically filled in the student 

client interfaces with assignment name to increase consistency. Similarly, the student 

clients automatically filled in the login and the name of the computer that the students 

were using. However, even though the data set was carefully designed, some cleansing 

was necessary. For example, some students used several computers away from the lab, 

and their logins needed to be recoded for consistency. In a few cases, the only way to 

obtain their login was to look in the comments in the source code. 

Some students asked the same question twice because of a glitch in the software 

that caused a delay between question submission and system acknowledgement; the 

duplicate questions were removed from the dataset, but the original questions were left in 

the dataset. Most of the dataset deletions can be attributed to duplicate questions. If a 

human could not classify the question using the student's natural language or the status of 

the source code, then the question was excluded because the student probably relied on 

spoken dialog with a TA that the system was unable to capture. The instructors and 

developer occasionally tested the system, and questions generated for that purpose were 

also removed. Additionally, an occasional question related specifically to a laboratory 

assignment and not a weekly programming assignment, and those questions were also 

excluded. The weekly laboratory assignments were much shorter than the programming 
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assignments, and the vast majority of questions about the laboratory assignments were 

answered through spoken dialog not captured by the VTA system 

While students were waiting for the TA, they might figure out the answer to their 

own question and remove themselves from the queue. Additionally, several students 

appeared to attempt to engage the TA in dialogue using the system for various reasons 

including expressions of gratitude (e.g., ""Thanks! That fixed it" or "ok I got it, thanks"), 

explaining location (e.g., "That would be great. Lab 4 - 20. Sorry is that 4th floor of the 

WEB?" "Sorry Im directionally challenged. On the server side or on the side close to the 

wall?"), requests for in person help (e.g., "Please come" or "anyone here?"), and 

complaints about the system (e.g., "i keep getting disconnected and it says i am doing it 

but i am not. Hopefully you still have me question."). Unless such dialog also included a 

new, novel question, it was also excluded from the dataset. 

3.5 Interrater Reliability 

When is a question similar to a previous question? Similarity is an inherently 

continuous concept, with some questions being more similar and others being less 

similar. Unfortunately, to evaluate the accuracy of the algorithm, it is necessary to 

convert the continuous concept to a binary measurement. The original plan was to 

simply use the answer categories as recorded by the human TAs. Unfortunately, tagging 

the data appears to be a task that requires training (so that the TAs know what to 

aggregate and disaggregate), and it may be a task that is difficult to perform in real time 

while answering questions. Furthermore, not all of the answer categories that the TAs 
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chose are particularly descriptive of the student's question. As the prior work section 

emphasized, there are many possible classification schemes for compiler errors and 

student questions and none is a widely accepted standard. The human TAs participating 

in the study expressed concern that they didn't have time to tag data when several 

students were waiting for help, so they were told that they could tag questions with a tag 

such as "Answered in person" under those circumstances. Approximately a quarter of the 

data was tagged "Answered in person" by the human TAs. Finally, the human TAs could 

not easily recycle categories from previous assignments, so much of the data are tagged 

with redundant categories across assignments, such as "Testing,", "Testing for integer," , 

and "Tests". By the TAs orginal tags, excluding "self-resolution" and "Answered in 

person" categories, less than a third of the questions were repetitive in nature. This 

seemed unlikely and low, and the "Answered in person" category was problematic. 

Consequently, after the data were collected, I coded all of the data. Each question 

that could conceivably be answered with the same response was assigned to a category 

for that response. Then an undergraduate TA coded approximately a third of the data, 

assigning tags from a set devised by me for that assignment. Because the interrater 

reliability was high (Cohen's Kappa=0.872), the other two thirds of the data were not 

coded by a second TA, but they were included in the dataset. 

3.6 Dataset Statistics 

This left a dataset of 411 questions from 13 different assignments covering a total 

of 143 answer categories or information needs. Of the 411 questions, 268 of the 
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questions (143 subtracted from 411) were repetitive in nature, and had a similar 

previous question. That means that 65% of the questions were repetitive. 

Excluding stop words, length of student questions ranged from 0 to 93 words, 

with a median of 7 words and a mode of 5 words. More than 2% of the questions had no 

words after stop words were excluded. More than 90% of the questions had 16 words or 

fewer. Of the 30 questions with more than 16 words, 12 contained source code mixed 

with natural language and 3 contained test result sets. Figure 3.3 shows the number of 

questions asked as a function of the number of unique words in the question. 

The vast majority of the questions (75%) were asked on lab machines with the 

other 25% being asked on personal machines, from either home or the lab. Unfortunately, 

the logging software did not record a distinction. Although the logging software allowed 

Figure 3.3. Question Length 
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students to indicate which Java class and method their question was about, less than a 

third actually did so, and of that third, many students only indicated a Java class, but not a 

Java method. Approximately half of the questions (43%) were submitted with code that 

did not compile. 

3.7 Questions Per Assignment 

With the assignment number as the independent variable and number of questions 

asked per assignment as the dependent variable, a bar chart shows which assignments 

generated the most questions. The number of questions is further disaggregated into the 

number of questions for which the code compiled and the number of questions for which 

the code did not compile. The results are shown in Figure 3.4. 

One of the most interesting data points in the Spring 2008 data is assignment 5 

which has many more questions asked than the other assignments in its neighborhood; it 

is also the only assignment for which the majority of the questions involve code that did 

not compile. A little background information may explain this spike. Immediately prior 

to assignment 5, the human TAs were given a rather stern lecture and told to make sure 

that all questions went through the logging system built into the Virtual TA software, 

even/especially the questions asked while they were circulating through the lab. If this is 

indeed what caused the spike in assignment 5, there are at least two interesting 

observations. First, the fact that many of the questions for assignment 5 involved code 

that did not compile suggests that students may be reluctant to pro-actively ask for help 
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Figure 3.4. Questions Per Assignment 

resolving code that is obviously incorrect; perhaps they are embarrassed that their code 

does not compile? Second, if the spike can be attributed to prompted questions, then the 

data for assignment 5 suggest approximately 14 prompted questions (14 = 40 total 

questions for that assignment - 26 questions on average for the preceding and following 

assignments) out of 40 total questions or a prompted question rate of approximately 33%. 

Anthony et. al.[9] report approximately four unprompted questions for one prompted 

question or a prompted question rate of 20% for a tutorial system using chat, audio, and 

video. The difference in prompted question rates could be attributed to either the human 

doing the prompting or to the different experimental setups. Either way, tutorial 

strategies to increase the efficacy of prompting students to ask questions is worthy of 

further research, and results in this area are likely to be broadly applicable. 
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Two other observations from Figure 3.4 merit a little discussion. First, 

assignments and assignment4 have smaller question counts than assignment03 and 

assignment04. The difference can be attributed to enrollment differences in the Spring 

(about 80-90 students) versus the Fall (about 150-160 students). Second, many more 

questions were asked about assignmentlO than the others. AssignmentlO appears to have 

been an exceptionally difficult assignment for the students, but the reason is a mystery. 

3.8 Questions Per Student 

During Spring 2008, a total of 39 students asked questions using the system 

software, and during Fall 2008, a total of 24 students asked questions using the system 

software. Figure 3.5 shows the percentage of questions asked per student. One 

observation from Figure 3.5 merits further discussion. One student asks significantly 

more questions than any of the other students in the Spring 2008 data. In both datasets, 

half of the questions can be attributed to five or fewer students. Personal experience and 

anecdotal evidence suggest that one student often contributes significantly more 

questions or dialogue than others, but many of the research papers on student questions 

report only a flat number, such as average number of student questions per hour [9, 34]; 

reporting flat numbers hides this behavior from the casual reader. 

3.9 Questions Per Category 

How many questions occur in an answer category? To graph this, the x-axis 

represents the categories of answers for the top ten answer categories (categories with 
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Figure 3.5. Percentage of Total Questions Asked by Each Student 



www.manaraa.com

54 
eight or more questions asked) ordered by the number of questions per category. The 

y-axis represents the number of questions asked for a particular category. Two series of 

data are presented, the total number of questions, and the number of questions with code 

that did not compile. Figure 3.6 shows the resulting graph. 

Figures 3.7 and 3.8 shows similar graphs disaggregated by assignment, with a line 

for each assignment. The x-axis indicates the rank of the answer category with the most 

popular question for an assignment having a rank of 1. The y-axis indicates the number of 

questions asked in the category with that rank. Different assignments may assign 

different ranks to the same answer category, and the answer category of a particular rank 

generally differs across assignments. For example, the category with rank 1 for 

assignment3 is not the same category as the category with rank 1 for assignment^ 

although they are graphed in same position on the x-axis. The vast majority of the 

repetitive questions are contained in the top five categories per assignment. This 

suggests with very high likelihood that if the correct answer is not contained in the top 

five categories, it is not a repetitive question. Also, the number of repetitive questions is 

much higher in the data from Fall 2008 when more students were enrolled in the class. 

That suggests that this approach probably scales well, and it is probably more appropriate 

for larger classes. 
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CHAPTER 4 

ANALYSIS 

The majority of the research described in this dissertation is focused on a 

particular research question, "Can domain knowledge and educational context improve 

the classification of student questions?" This chapter answers that question in the 

affirmative for introductory computer science. 

Classification is a classic machine learning problem, and extensive prior work 

exists for classifying data. However, much of that research requires that the data be in 

vector or matrix form prior to the application of the machine learning algorithm, and 

reducing the compiler error messages, source code, and educational context to vector or 

matrix form is not a trivial problem. The remainder of this chapter describes and 

analyzes a general approach to classifying the questions in my dataset. 

I frame question classification for introductory computer science as a process in 

which the data from the student questions, including the natural language, is reduced to a 

vector space and cosine similarity is applied to find similar questions. This dissertation 

analyzes 411 questions from an introductory Java programming course by reducing the 

natural language of the questions to a vector space, and then utilizing cosine similarity to 

identify similar previous questions. I report classification accuracies between 23% and 
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56%, obtaining substantial improvements by exploiting domain knowledge (compiler 

error messages) and educational context (assignment name). The mean reciprocal rank 

scores are comparable to and arguably better than most scores reported in a major 

information retrieval competition, even though the dataset consists of questions asked by 

students that are difficult to classify. 

4.1 Building a Matrix from Natural Language 

Reducing natural language to a vector space model is a relatively well-studied 

problem, and the techniques utilized in this research have been utilized in other similar 

systems (e.g., [37, 50]). This research performs the reduction in a four step process. 

First, the sentence is tokenized, and punctuation is removed. The resulting bag-of-words 

model is especially appropriate for the grammatically incorrect, difficult to parse 

language with which students express themselves. Second, any words found in a list of 

common stopwords are removed. The stopword list is the same one utilized in a similar 

tutorial dialog system [37] and is the stop word list in the original Bell-Core language 

processing distribution. Empirical comparisons with other stopword lists available from 

the internet suggested that this list was as effective or more effective than others for the 

task. I extended the stopword list with the following four words that behave as stopwords 

for this task: "im" (students' shortened form of I'm"), "problem," "need," and "help." 

Third, the remaining tokens are stemmed with a Porter stemmer [61]. Stemming reduces 

words to their morphological roots, generally discarding suffixes. For example, although 

"communicate" and "communication" are different words, they share the same stem 
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"communicat." Finally, the algorithm builds a vector that contains each remaining 

word stem in the original question and the number of times it occurs in the question. 

Table 4.1 shows five questions from students, their vector stems, and their answer 

category. As explained in the previous question, the answer category is a label created by 

a human TA to describe a question. A matching pair of answer category tags is 

considered the gold standard for establishing question similarity. Table 4.2 shows an 

abbreviated vector representation of the first three questions. Although the data in this 

example happen to have binary values, the value of data could be any whole number. 

Table 4.1. Sample Questions, Vector Stems, and Answer Categories 

Ql 

Q2 

Q3 

Q4 

Q5 

Natural Language 

How do i return the file extension 
only? 
my variable for rectSideOne is 
suppose to be 1/9, the program is 
returning a 0 for this calculation. I 
have no idea why. 
I need help extracting a file extension 
from a filename. 
Program is not computing volume 
correctly 
Im having trouble understanding why 
(1/9) equals 0.0 instead of 
0.111111 

Vector Stems 

return file extens 

variabl rectsideon 
suppos 1/9 
program return calcul 
idea 
need help extract file 
extens filename 
program comput volum 
correctly 
im trouble understand 
1/9 
Equal 

Answer 
Category 
File extension 
extraction 
Integer division 

File extension 
extraction 
Integer division 

Integer division 

Table 4.2. Natural Language Representation of Questions 

Ql 
Q2 
Q3 

how 

1 
0 
0 

return 

1 
1 
0 

file 

1 
0 
1 

extens 

1 
0 
1 

only 

1 
0 
0 

variabl 

0 
1 
0 

rectSideOne 

0 
1 
0 

suppose 

0 
1 
0 

program 

0 
1 
0 

Calcu 
1 

0 
1 
0 
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4.2 Weighting the Vectors 

4.2.1 Notation 

At this point, a little notation will be useful in describing the data and the analysis. 

The data displayed in Table 4.2 suggest a matrix composed of vectors vi m where m is 

the total number of questions that have been asked, and Vj is the vector representing 

question i. Each vector Vj consists of entries for each of n stems where n is the total 

number of unique stems in all of the questions. The value Vy is the number of times that 

stem j occurs in question v,. 

The next step in the typical analysis using cosine similarity is to weight the 

vectors. In this research, the vectors are weighted based on a common formula called 

term frequency inverse document frequency (tfidf score [1]) that gives more weight to 

rare words and less weight to common words. The tfidf score of a stem j in a question i 

is the product of the term (stem) frequency and the inverse document frequency. The 

term frequency is the number of times a stem j occurs in a question divided by the 

number of stems in the question i. The inverse document frequency is the logarithm of 

the total number of questions divided by the number of questions with the term (stem) j . 

Equation 4.1 shows the formula for calculating the weights for a stem (wy) in a matrix w 

of weighted vectors wi..m using tfidf given an initial set of vectors vi..m where m is the 

total number of questions. Table 4.3 shows the weighted version of the data in Table 4.2. 

Equation 4.1. tfidf score 

r \ r \ 

wv = 
vv In m 

1 k > o] 
V *= i J 
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Table 4.3. Weighted Natural Language Representation of Questions 

Ql 
Q2 
Q3 

How 

.21 
0 
0 

return 

.13 

.11 
0 

File 

.13 
0 

.34 

extens 

.13 
0 

.34 

only 

.21 
0 
0 

variabl 

0 
.18 
0 

rectSideOne 

0 
.18 
0 

suppose 

0 
.18 
0 

program 

0 
.18 
0 

calcul 

0 
.18 
0 

4.3 Measure Similarity in an Online Learning Framework 

This section describes how cosine similarity is used in an online learning 

framework to identify similar questions. The most recent question that a student has 

submitted is considered the current question. Every question that occurred earlier in time 

than the current question is considered a previous question. Each of the previous 

questions is compared to the current question, and a similarity score is calculated as 

explained in the next paragraph. The previous question with the highest similarity score 

when compared to the current question is considered the most similar. For example, in 

Table 4.3, Q2 would only be compared to Ql. However, Q5 would be compared to Ql, 

Q2, Q3, and Q4. Of these, Q2 would be the most similar because it has the highest 

similarity score. 

Several approaches could be utilized to measure the similarity of two vectors. 

Manning and Schutze list six different possible solutions for this problem [54]. I focus 

on the most commonly used approach in tutorial dialog systems, known as cosine 

similarity, as shown in Equation 4.2. Cosine similarity measures the cosine of the angle 

between two vectors, c, the current question vector and/?, a previous question vector. The 

numerator of the cosine similarity is the dot product of the two weighted vectors. The 

denominator of the cosine similarity contains normalizing terms so that the magnitude of 
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both vectors is one. The resulting cosine similarity score is on a scale of 0 to 1. A 

cosine similarity score of 0 means that the pair has no common words, and 1 means that 

the questions are identical. 

Equation 4.2. Cosine Similarity 
n 

^ WcjWpj 

4.4 Similarity Analyses 

For each question, the similarity between that question and each previous question 

is calculated. The previous question that has the highest similarity score when paired 

with the current question is considered the "most similar." If multiple previous questions 

have the same highest similarity score, the most recent new question is considered the 

"most similar," because based on the principle of temporal locality more recent questions 

are more likely to be more similar. Once the "most similar" question has been identified, 

the answer category labels (as assigned by the expert human TA and verified by another 

TA) for the "most similar" question and the current question are compared. If they 

match, the system earns a point for accuracy, and if they do not match, the system does 

not earn a point for accuracy. 

I report accuracy scores with two different denominators, all questions (411) and 

repetitive questions (268). Of these, only the repetitive questions bar could theoretically 
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reach 100%. In both scores, the numerator is the number of correct similar questions 

found (96). As shown in Figure 4.1, the trivial baselines include choosing a random 

answer, the most frequent answer, and the most recently used answer. Of those, the most 

recently used answer is the most effective algorithm, suggesting the importance of 

temporal locality in answering student questions. The cosine similarity algorithm can 

classify 35% of the repetitive questions or 23% the total questions. For those questions, 

an answer to a previous question could theoretically be recycled to answer that question. 

Another way of describing this result is that in a course with five human TAs supporting 

the professor, one of those TAs could be replaced by the software. 

4.4.1 On the Omission of Statistical Significance Tests 

At this point, many readers may wonder whether or not the differences in accuracy 

reported by the various baselines are statistically significant. Statistical significance tests are 

Classification Accuracy 

D Total Questions 

• Repetitive 
Questions 

Random Most Most Recent Baseline 
Frequent (Cosine 

Similarity with 
Natural 

Language) 

Classification Method 

u 38 

o 1 
3 1S 

Figure 4.1. Classification Accuracy Baseline 
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meant to show whether differences in two distinct populations can be attributed to a 

variable that distinguishes those two populations or just chance. However, all of the data 

used in each condition in the experiments reported in my dissertation come from the same 

population, so any change in classification accuracy can be attributed to the algorithm. 

Because the experiments reuse data in the various conditions, statistical significance tests 

would be unlikely to produce accurate values, and in many cases would over-estimate the 

significance because existing statistics require that the data used in a test come from two 

distinct sets. 

4.5 Compiler Output Processing 

The classification techniques described so far in this chapter have been used 

previously for a variety of tutorial dialog tasks, and they are inherently domain 

independent. However, the low accuracy of question classification suggests room for 

substantial improvement. One possible way to improve classification is to leverage 

some domain specific knowledge, specifically the output of the compiler. Since more 

than 40% of the questions were submitted with code that did not compile, the compiler 

error messages represent a source of substantial unused data. 

Previous work has examined compiler errors from novices learning to program in 

Java. Different research groups have reported widely varying numbers for the different 

kinds of compiler errors. Table 4.4 reports on the number of kinds of compiler errors 

reported by three projects that studied novice Java programmers. 
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Table 4.4. Compiler Error Type Messages 

Project 
BlueJ [42] 
GILD [76] 
Jikes [2] 

Error Type Messages 
42 
88 
226 

Because all three groups worked with similar data, the reports with numbers that 

differ by an order of magnitude are somewhat surprising. However, a more careful 

investigation shows that these groups are aggregating and disaggregating the kinds of 

compiler errors differently. For example, the common novice compiler errors of type 

"cannot find symbol" are aggregated together to form a single error type message in the 

BlueJ project. However, in the GILD and Jikes projects, "cannot find symbol" errors are 

disaggregated into four or more types including "cannot find symbol-constructor," 

"cannot find symbol-class," "cannot find symbol-variable," and "cannot find symbol-

method." Similar aggregations and disaggregations for other compiler error messages 

probably explain the widely varying number of error type messages, although the limited 

documentation makes verification impossible. 

Unfortunately, even the groups that have disaggregated error type messages may 

not have been as comprehensive as they could have been in designing their 

disaggregations. Consider for example the "cannot find symbol-class" error type 

message. If it is followed by the word "string," a knowledgeable instructor might suspect 

that the underlying error is in fact a capitalization problem. However, if the error type 

message is "cannot find symbol-class" and it is followed by the word "Scanner," the 

likely error is not a capitalization problem, but rather a missing import statement. 
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Similarly, the compiler will frequently report a "missing semicolon" when the student 

has imbalanced parentheses. In this research, the term "underlying error" refers to 

problems such as capitalization and missing import or missing parentheses. No other 

research that we are aware of classifies student questions or code snapshots according to 

their underlying errors. 

A naive approach to incorporating compiler output into the vector space model 

would be to simply tokenize the error messages and include them just as the natural 

language was included. The problem is that errors such as missing import and 

capitalization will appear to be very similar because they contain four similar tokens 

("cannot," "find," "symbol," and "class"), and the algorithm will be unable to distinguish 

between them. To remediate this problem, some of the most common compiler errors 

and code snapshots are processed by Java code that generates a brief description of the 

underlying error based on the code snapshot and then the underlying error is incorporated 

into the model. To facilitate replication, the conversions from compiler errors to the 

underlying error representation used in this research are described in Table 4.5. Of the 

nine compiler errors that the system processes, five are ambiguous, and the system uses 

information from the Internet and the students' source code to pinpoint the exact error. 

Table 4.6 shows vector representations for three compiler errors. Again, these 

vectors are based on the same general approach used for the natural language, and once 

again, these rows would extend the existing matrix with natural language. 

• cannot find symbol class string (CE1) 
• cannot find symbol class Scanner (CE2) 
• variable foo is already defined (CE3) 
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Table 4.5. Conversion of Compiler Errors to Underlying Error Terms 

Compiler Error 
Contains "already defined" 
Contains "incompatible types" 
Contains "not have been initialized" 
Contains "cannot find symbol-
constructor" 
Contains "cannot find symbol-class" 
AND search engine returns more than 
100,000 hits when searching for the 
specific class AND the first result is 
capitalized differently than the 
specific class 
Contains "cannot find symbol-class" 
AND the source code does not 
contain the pertinent import statement 
Contains "cannot find symbol-class" 
OR "cannot find symbol-variable" 
AND the source code contains 
another symbol that is capitalized 
differently 
Contains "cannot find symbol-
variable" AND the source code 
contains that symbol followed by a 
parenthesis 
Contains "cannot find symbol-
method" AND and the source code 
contains that symbol followed by a 
parenthesis 

Natural Language Representation 
alreadyDefined 
incompatibleTypes 
notHaveBeenlnitialized 
cfsConstructor 

cfsCapitalization 

cfsMissinglmport 

cfsCapitalization 

cfsMissingParenthesis 

cfsMethodMismatch 

Table 4.6. Database Representation of Compiler Errors 

CE1 
CE2 
CE2 

Capitalizat 
1 
0 
0 

missinglmport 
0 
1 
1 

alreadyDefined 
0 
0 
1 



www.manaraa.com

68 
4.6 Answer Caching 

Previous work has exploited a technique called answer caching to provide 

answers to some questions that utilize different wordings to express the same information 

need [58]. Answer caching matches an incoming question to a similar previous question 

in order to recycle an answer. The answer caching technique then leverages the 

additional language in the similar question to build a more robust language model of that 

information need. Specifically, answer caching merges the data from vectors that 

indicate a similar information need to form a single vector. Without answer caching, the 

five questions in Table 4.1 are modeled with five vectors. With answer caching, they are 

represented with two vectors, one for "File extension extraction" (the sum of the vectors 

for Ql and Q3) and one for "Integer division" (the sum of the vectors for Q2, Q4, and 

Q5). The original paper on answer caching reports a 1-3% improvement on a dataset 

with well-formed, grammatical, well-spelled questions. Figure 4.2 demonstrates a similar 

improvement when incorporating both answer caching and the processed error messages. 

Interestingly, the processed error messages alone do not improve classification, and 

answer caching alone only produces minor improvements ( < 1%), but the combination of 

the techniques improves accuracy by 3% of the total questions. As shown in Table 4.7 

answer caching does not improve classification for the compiler errors by themselves. 

This is probably because the recency algorithm chooses the question added to the model 

most recently, not the question asked most recently. However, answer caching helps 

substantially when the natural language is included in the model. The number of 

correctly classified questions (or numerator) for the "With Answer Caching and Error 
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Figure 4.2. Classification Accuracy with Answer Caching and Error Messages 

Table 4.7. Questions Classified Correctly with Compiler Error Messages 

Baseline 

With Natural 
Language Terms 

Raw Compiler Error Messages 

Without Answer 
Caching 

79 

94 

With Answer 
Caching 

34 

96 

Processed Compiler Error Messages 

Without 
Answer 
Caching 

79 

92 

With Answer Caching 

24 

104 

Messages" method is 104, and the denominators are the same as they was in the baseline 

conditions, 411 for total questions and 268 for repetitive questions. 

4.7 Disaggregating by Assignment 

For a final improvement in classification accuracy, the data was disaggregated by 

assignment. For example, assignment 1 questions were compared only to other 

assignment 1 questions and assignments questions were compared only other assignments 
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questions. As shown in Table 4.8 and Figure 4.3, this technique improved the number 

of correctly classified questions (or numerator) to 113. To facilitate comparison in the 

bar charts, we reuse the same denominators, 411 total questions and 268 repetitive 

questions. However, when only comparing questions from the same assignment, the 

number of repetitive questions is smaller (201) and that denominator gives a 

classification accuracy of 56% of repetitive questions. With the data disaggregated by 

assignment, incorporating answer caching and error messages reduced accuracy slightly 

(101 questions classified correctly or 50% when 201 is the denominator). Statistical 

significance tests are omitted as explained in 4.4.1. 

The lack of sufficient data to model different kinds of compiler errors is probably 

the cause of a drop in accuracy when answer caching and error messages are 

incorporated. Because compiler errors are being reduced to a single term, several of them 

are necessary to boost the compiler error terms to a heavy enough weight to influence the 

similarity algorithm. However, excluding error messages and answer caching returns the 

classification algorithm to a domain independent state. Compiler error messages are a 

source of data that are relevant only in the computer science domain. By contrast, natural 

language and assignment numbers are a data source that is available in virtually every 

educational domain. The claim that the system is domain independent is strictly 

theoretical without empirical data from another domain, but it is a positive claim. 
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Table 4.8. Classification Accuracies 

Baseline 

With Error Msgs 
and Answer Cache 

Aggregated 

Total Questions 
93/411 
(23%) 

104/411 
(25%) 

Repetitive Questions 
93/275 
(35%) 

104/275 
(39%) 

Disaggregated 

Total Questions 
113/411 
(27%) 

111/411 
(27%) 

Repetitive Questions 
113/204 
(55%) 

111/204 
(54%) 

Classification Accuracy 

|0/. ____ 

• Total Questions 

• Repetitive Questions 

Baseline (Cosine With Answer With 
Similarity with Caching and Error Disaggregation by 

Natural Language) Messages Assignment 

Classification Method 

Figure 4.3. Classification Accuracy with Disaggregation by Assignment 

4.7.1 Analysis of Errors 

Comparing individual instances of questions that the three major classification 

algorithms (baseline, domain knowledge, and compiler errors) classified differently is 

difficult because many elements are changing in each condition, including both the 

number of questions that a question is compared to and the weights of the terms in a 

question. Furthermore, the quantity of these changes is substantial enough that trying to 

manually understand them will probably cause cognitive overload. However, for 
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comparison, this section presents an analysis of some of the questions that were 

classified correctly and incorrectly by various algorithms. 

4.7.1.1 Baseline vs. Domain Knowledge (Processed Compiler Errors) 

Of the 14 instances that the baseline condition classified correctly and the domain 

knowledge condition classified incorrectly, only 3 had compiler errors. Many of the 

questions in this category appeared to be broad questions expressed in few words. For 

example: 

• I need help with while loop and linked list. 
• I need help with the maze. 
• Is there any help on how to draw a pyramid? 

• TANAME i need your help when you get a chance. 

Of the 25 instances that the domain knowledge condition classified correctly and 

the baseline classified incorrectly, 8 had compiler errors. Surprisingly, the majority of 

these were submitted with code that compiled. However, incorporating the information 

from error messages would have changed the weights in the model, and that may have 

caused the algorithm to make fewer mis-matches. Some examples of questions in this 

category include: 

• Im having trouble understanding why (1/9) equals 0.0 instead of 0.1111.... 
• I am trying to fix my count CorrectChars method- i know what i want to do but 

not sure how to fix it 
• my program cannot find the class file 
• my compiler is saying it cant find setPrevious method even though i am passing it 

the right parameters 
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4.7.1.2 Baseline vs. Educational Context (Assignment) 

Of the 16 instances that the baseline condition classified correctly and the 

educational context condition classified incorrectly, only 3 had compiler errors. Many of 

these questions demonstrated at least some mastery of domain vocabulary. For example: 

• Hello, I have no idea how to scale these pyramids. Can you point me in the right 
direction? Yeah, I have that code, but in the lab friday... The smiley DID NOT 
scale correctly, and TA_NAME said he didnt have time to fix it. So he told us to 
just worry about the x,y position 

• Getting some dumb null pointer nonsense 

• So we dont use g.fillpolygon right? we are suppose to use g.drawLine ? 

Of the 36 instances that the educational context condition classified correctly and 

the baseline classified incorrectly, 2 had compiler errors. Many of these questions appear 

to have come from student seeking reassurance that they were on the right path and 

making progresss towards completing their assignment. Some examples of questions in 

this category include: 

• I am wondering if my class looks good or i should change a few things- i think it 
looks good, i am looking at the documentation 

• Im not really sure if Im doing this correctly or not, I cant find any examples of 
contstructor stubs in the book. 

• Is there any way I can prevent an "index out of bouds exception" on my array? 
String [][] mazeArray = new String [cols][rows]; mazeArray [cols - l][rows] = 
"S"; Obviously cols - 1 is out of bounds, but canl somehow make it null or 
something along those lines? 

• Alright I think I got it all. How does that look? Oh and any suggestions on code 
formating or commenting? 

4.8 Alternative Evaluations of Question Answering Systems 

The most accurate classification algorithm found similar previous questions for 

27% of the questions or 42% of repetitive questions. Unfortunately, automatically 
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determining whether or not there is a similar previous question (or if this question is 

repetitive) is a prerequisite to exploiting similar questions in a tutorial intervention. One 

possible method of distinguishing between true positives and false positives utilizes the 

similarity score of the "most similar" question. The similarity score of the "most similar" 

question is considered the "maximum similarity score". With an ideal threshold, all of 

the true positives (questions with correct similar previous questions) have a maximum 

similarity score above threshold, and the false positives (questions without similar 

previous questions) have a maximum similarity score below threshold. Figure 4.4 is an 

attempt to find an appropriate threshold. The independent variable is the maximum 

similarity score for a question, and the dependent variable is 0 if the algorithm did not 

find a similar previous question and 1 if the algorithm correctly identified a similar 

question. If Figure 4.4 were a step function, then the threshold would be at the step. 

Figure 4.4. Thresholding 
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Figure 4.4 is a great way to visualize data while searching for thresholds, but 

cannot quantitatively measure the trade-offs between confidence and accuracy. To 

measure this trade-off, the TREC 2002 Question Answering Track of the Text REtrieval 

Conference (TREC) utilized confidence weighted scores as shown in Equation 4.3 [82]. 

The maximum similarity score for a question is also a measure of confidence; a higher 

maximum similarity score suggests that the system is more confident that the answer is 

correct. Consequently, the maximum similarity scores can be used to rank the questions 

from most to least confident. 

In mathematical notation, a sequence of Q questions is sorted based on the 

maximum similarity score. The rank i of a question is the index of that question in the 

sorted sequence. A low value of i indicates a high maximum similarity score and a high 

value of i indicates a low maximum similarity score. 

The confidence weighted score is shown in Figure 4.5 as a function of the number 

of questions. The x axis indicates the number of questions included sorted by descending 

order of maximum similarity score. The y axis indicates the confidence similarity score. 

The VTA system has a confidence weighted score of 0.41. This is a reasonable score for 

this task and dataset. 

Equation 4.3. Confidence Weighted Score 

1 ^ number correct in first i ranks 
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Figure 4.5. Confidence Weighted Score 

Although identifying the appropriate information on the first try is desirable, it is 

not an essential characteristic of a good information retrieval algorithm. Search engines 

typically return thousands of results for a single query, and it is not unusual for users to 

consult multiple links before finding the desired information. One measurement that 

considers multiple possibilities is mean reciprocal rank. Using mean reciprocal rank, a 

system considers a ranked list of possible answers for each query or question. The score 

that a system receives for each question is the reciprocal of the rank of the possible 

answer that contains the actual answer. If the rank of the possible answer that contains 

the actual answer is greater than 5, the system receives a score of 0 for that question. 

Because the system is using answer caching, at most one of the possible answers will 

match the actual answer. Using mean reciprocal rank, 40% of the questions had a score 

greater than or equal to 0.2. The number of questions asked is shown as a function of 
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mean reciprocal rank for the 40% of questions with a score greater than or equal to 0.2 

in Figure 4.6. 

The mean reciprocal rank score of an entire system is the average of the mean 

reciprocal rank scores of all the questions asked using the system. Using all of the 

questions, the VTA system has a mean reciprocal rank of 0.31. Using only the repetitive 

question, the VTA system has a mean reciprocal rank of 0.46. These scores are 

reasonable. 

4.9 Synthesizing an Algorithm to Classify Questions 

The majority of this chapter is focused on analysis of the data and various 

measurements. One point of concern is that incorporating compiler errors does not 

improve accuracy when the assignment is disaggregated by assignment. Table 4.9 

shows the accuracies for the three major classification algorithms when the code is 

Figure 4.6. Reciprocal Rank Score 
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Table 4.9. Classification Accuracies when Disaggregated by Compiler Error 

Algorithm 
baseline 
domain 
context 
baseline 
domain 
context 

Compiler Status 
didNotCompile 
didNotCompile 
didNotCompile 
Compiled 
Compiled 
compiled 

Accuracy 
0.146199 
0.210526 
0.169591 
0.283333 
0.283333 

0.35 

disaggregated based on whether or not it compiled. Not surprisingly, the best algorithm 

when the code does not compile is the domain knowledge algorithm that includes 

compiler errors. The best algorithm when the code does compile is the context algorithm 

that only compares to other questions from the same assignment. Whether or not the 

code compiles is easy to automatically compute, and using the results, the system can 

automatically decide to use the appropriate algorithm, similar to previous work on 

choosing a correct intervention for students learning to read [39]. By using the 

information about whether or not the code compiles, the system can automatically select 

the more accurate classification algorithm to classify 119 questions or 29% of the total 

questions and 44% of the repetitive questions correctly as shown in Figure 4.7. 

Finally, if the cosine similarity score is below .15, the likelihood is very great that 

the system does not have an answer for the question, and approximately 20% of the data 

falls into this bin. For these questions, the system would not even attempt an answer. For 

the questions where the system thinks it might have an answer, 40% of the time the 

correct answer is one of the top five ranked answers. Assume that the system returns five 

possible matching questions and answers for each query, and assume that the system does 
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Figure 4.7. Classification Accuracies 

not even try to answer the 20% of the questions with the lowest cosine similarity, so that 

the system is only attempting to answer 80% of the questions. Then the system will 

return a relevant answer for 40% of all questions divided by 80% of questions attempted 

or 50% of the time. That is probably good enough to be potentially useful in a real 

classroom setting. 

4.10 A Theoretical Cost and Benefit Analysis 

The introduction began by suggesting that human resources for courses represent 

a significant cost in education that could be reduced by the clever application of 

technology. An empirical analysis of this issue is beyond the scope of the dissertation; 

however, a theoretical analysis is presented here in the hopes that it may inform future 

studies. 
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At least four major input variables would influence the value of this system; 

they are the quality of the instructing staff, the availability of the instructing staff, the 

quality of the answers in the system, and the quality of the classification algorithm. For 

now, it is reasonable to suppose that the quality of the classification algorithm is going to 

be somewhat bad, between 25% and 50% accurate. Because a quality instructor could be 

hired to write answers for the system, it is reasonable to assume that the quality of the 

answers in the system will be quite good. The quality and the availability of the teaching 

staff are much more difficult to measure and evaluate, and will vary greatly depending on 

the courses in which the system is deployed. Large introductory courses typically 

employ several teaching assistants, and the quality of the teaching assistants in the 

introductory courses usually varies greatly including some of the best and some of the 

worst within the department. The best teaching assistants and the professor are probably 

available for a maximum of ten hours a week combined. The remaining teaching 

assistants may be available for as little as ten hours a week or as much as the whole week, 

but they may or may not be able to provide useful help and feedback. Since many novice 

programming students plan to program at midnight, and most instructors are not available 

then, it is reasonable to suppose that the availability of the instructional staff is not good, 

and may even be bad. 

Given a question, the system can do one of three things; the system can answer 

correctly, the system can answer incorrectly, and the system can decide to wait for a 

human to answer the question. If the system answers correctly by recycling an answer, it 

saves human instructional staff time, and depending on the availability of the 
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instructional staff (which is probably not good), it saves substantial student time. If the 

system answers incorrectly, it may cause student frustration and/or confusion; however, if 

the instructional staff was unavailable (which is probable), then student frustration and/or 

confusion may have been inevitable anyway. If the system waits for a human to answer 

the question, then the system does not fundamentally change the outcome. Thus, the 

chief benefit of the system is the potentital to save human time for both the student and 

the instructional staff. The chief costs of the system are potential frustration for students 

(which may be inevitable) and the time to develop the system, which should be close to a 

constant assuming a stable portfolio of assignments. 
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CHAPTER 5 

PERIPHERAL ANALYSES 

The process of completing the research for a dissertation often allows a researcher 

to explore several possibilities, including some that are not empirically impressive. This 

chapter includes justification for excluding some analysis techniques as well as some 

miscellaneous results that are not directly related to those already presented. They are 

included because they may be useful to other researchers with similar but different 

research interests. 

5.1 Latent Semantic Analysis 

In Latent Semantic Analysis (LSA) [52], a form of principle component analysis 

called singular value decomposition reduces the dimensionality of the matrix. Then, 

cosine similarity is calculated on the rows of the matrix. LSA has a strong theoretical 

foundation including a link to human cognition and learning that provides a very 

appealing foundation [52]. Additionally, LSA has previously been implemented in the 

AutoTutor intelligent tutoring system as described by Hastings1, Graesser, and 

colleagues. That research group tuned the parameters for LSA and found slightly 

stronger performance by altering features such as the amount of training data and the 

1 Hastings has recently dropped the Wiemer portion of his last name. 
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number of dimensions in the matrix [87]. They found that 400 terms in the final 

matrix was an ideal number for LSA, a result that has been recently replicated in other 

literature [18]. 

Those results combined with measurements of the data used for this research 

suggest that LSA is probably not appropriate for the task of classifying novice 

programmer questions. Since the assignments have an average of 30 questions each, and 

each question has an average of 6 terms after stop words are removed, and many of those 

words are repetitive across questions, theoretically, the total number of terms for a typical 

assignment is less than 200. Figure 5.1 confirms this empirically. Both the theoretical 

and empirical analyses confirm that this data are well out of the range in which LSA 

would produce optimal performance according to existing theory. Consequently, LSA 

was not investigated as an empirical technique for this dataset. 
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5.2 Negative Results with Source Code 

Designing abstract representations of student source code that are conducive to 

classification remains a difficult open problem. Simply tokenizing source code and 

extending vector representations with token types was not effective at all. A marginally 

effective alternative is to use a sequence of three tokens to create a trigram, and then 

build a vector representation of trigrams. For example, consider the following line of 

code: 

(4+5)/(6+7)); 

That line of code can be broken into the following trigram sequences 

(4+ 4+5 +5) 5)/ )/( /(6 (6+ 6+7 +7) 7)) )); 

These trigrams can then be used to extend the vector space models in a manner similar to 

the natural language additions. That approach was somewhat effective for one 

assignment, assignment6. In that dataset of 27 questions, six were repetitive, and the 

algorithm found four similar previous questions including extra semicolon and integer 

division errors and two on the structure of a method. However, when the data for that 

assignment was mixed with other assignments, any improvement in classification 

accuracy was lost. Creating partial parse trees or alignments of student code that does not 

compile remains an open problem. 

Another alternative to incorporating student source code that may be more fruitful 

is applying a different measurement of similarity. This research utilizes cosine similarity 

because it has become the standard for tutorial dialog; however, that measurement was 
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originally used in the information retrieval literature. Part of the justification for using 

cosine similarity in traditional information retrieval is that neither the query nor the 

document is more important in determining a match. However, a query is often quite 

short (typically two words, e.g., [44]), and a document is typically much longer. By 

normalizing the vectors before comparing them, the weight given to the documents and 

queries is distributed evenly. Similarly, when comparing two student questions, a 

verbose question is not necessarily more important than a less verbose question. 

However, when comparing answer strings or student programs or responses, the fact that 

a program is longer often indicates that a student has made more progress. In such a 

scenario, using distances of vectors that have not been normalized may be more 

appropriate than cosine similarity. 

5.3 Skipping Steps to Increase Accuracy 

Calculating the cosine similarity of two vectors is essentially a two step process. 

To calculate the numerator, the dot product of the two vectors is calculated. To calculate 

the denominator, the square root of the sum of the squares is calculated in order to 

normalize the vectors. In the process of writing and debugging the analysis code, I 

inadvertently discovered that skipping the square root step in the normalization step of 

calculating the denominator produces minor improvements in classification accuracy. In 

the condition with the highest classification accuracy (disaggregation by assignment), this 

minor modification improved classification accuracy by one question. In some of the 

other conditions, it improved accuracy by a few more questions, but not enough to 
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compete with the disaaggregation by assignment condition. Since the weights 

representing the words are all decimal values between 0 and 1, taking the square root of 

the values shrinks the spectrum and redistribute the weight. Consequently, I speculate 

that the square root step gives more weight to less important words and less weight to 

more important words. 

I reverted to the traditional definition of cosine similarity (and I have used it 

throughout the dissertation) to facilitate scientific comparison, but I note here that 

skipping the square root step does appear to slightly improve accuracy, and it would be 

less computationally expensive to skip that step. 

5.4 A Trained System to Classify Student Questions 

The research described in previous chapters of the dissertation employs an online 

learning framework to analyze and classify the questions that students ask. This 

approach is most appropriate while the system is learning and training on initial data; it 

models how a system would perform in its first semester. However, many courses 

recycle assignments across semesters, providing an extra source of redundancy that could 

be leveraged to potentially improve accuracy. The dataset collected for this dissertation 

facilitates two analyses in this area. 

5.4.1 Exploiting Redundancy Across Semesters 

The first analysis examines whether or not including the data from Spring 2008 

can improve the accuracy when classifying data from Fall 2008, using data from 



www.manaraa.com

87 
assignments and assignment4 in Spring 2008 and assignment03 and assignment04 in 

Fall 2008. Assignments and assignment03 are the same assignment, given in different 

semesters, and assignment4 and assignment04 are also the same assignment, given in 

different semesters. Table 5.1 shows data from individual assignments as well as similar 

questions aggregated across semesters. Similar questions found indicates how many 

similar questions the online learning analysis algorithm found. Repetitive questions and 

total questions are self explanatory. Unique answer categories indicates how many 

different answer categories assignment(s) had. 

As Table 5.1 shows, aggregating across assignments was less effective for 

assignments and assignment03 because disaggregated the algorithm could classify 18 

(5+13) questions, but aggregated the algorithm could classify only 13 questions, for a 

loss of five questions. However, for assignment4 and assignment04, aggregating across 

assignments was effective, classifying 48 questions accurately compared to 46 (9+37) 

when the assignments are disaggregated. These results are divergent and inconclusive. 

The unique answer categories column is somewhat revealing. In assignment3 and 

assignment03, merging categories across assignments reduces the total number of 

Table 5.1. Redundancy Across Semesters 

assignments 
assignment03 
assignments3 & 03 
assignment4 
assignment04 
assignments4 & 04 

Similar 
Questions 
Found 

5 
13 
13 
9 

37 
48 

Repetitive 
Questions 

7 
17 
25 
14 
41 
57 

Total 
Questions 

14 
26 
40 
24 
51 
75 

Unique 
Answer 
Categories 

7 
9 

15 
10 
10 
18 
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categories by 1 ((7+9)-15); however, in assignment4 and assignments, merging 

across assignments reduces the total number of categories by 2 ((10+10)-2). In both 

cases, it appears that questions that are asked only once in a semester are unlikely to be 

asked again in future semesters. 

5.4.2 A Batched Classification Approach 

Another way to study redundancy across semesters is to apply a batched learning 

approach instead of an online learning approach. With an online learning approach, the 

first question of an answer category will never be similar to another question. With a 

batched approach, the first question of an answer category could be found to be similar to 

another question if there is more than one question in that answer category. 

Additionally, with an online learning approach, each question is compared only to 

previous questions, but in a batched approach, each question is compared to all other 

questions, including questions asked after it. In the batched setting, the language model 

is completely trained before a question is classified. 

More questions would be considered repetitive with a batched approach. Table 

5.2 compares the number of questions classified correctly in the online version and a 

Table 5.2. Counts and Percentages of Correctly Classified Total Questions 

Aggregated Without Caching 
Aggregated With Caching 
Disaggregated Without Caching 
Disaggregated With Caching 

Online 
98 (24%) 
104 (25%) 
111(27%) 
101 (25%) 

Batched 
117(28%) 
111(27%) 
135 (33%) 
126(31%) 
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batched version, both when the data are aggregated and disaggregated across 

assignment and with and without answer caching. In all four major settings, the error 

messages are included in the model. As expected, the batched version classified more 

questions correctly, and a larger percentage of the total questions. The numbers in 

parentheses indicate the percentage of total questions classified correctly, with 411 as the 

denominator, since there are 411 total questions. 

Table 5.3 is similar to Table 5.2 with one major exception, the denominators used 

in calculating the percentages are based on repetitive questions instead of total questions. 

In the aggregated online setting, the denominator is 268, and in the disaggregated online 

setting, the denominator is 201. In the batched aggregated setting, the denominator is 

329, and in the batched disaggregated setting the denominator is 273. As before, the 

batched version still classified more questions correctly by counts, but a smaller 

percentage of the repetitive questions. One major problem with the supervised paradigm 

from a pedagogical standpoint is that to be useful, an instructor must commit to recycling 

assignments year after year to leverage improvements over the online setting. The online 

approach by contrast gives the instructor more freedom to change and adapt assignments, 

while still preserving relatively good classification accuracy. 

Table 5.3. Counts and Percentages of Correctly Classified Repetitive Questions 

Aggregated Without Caching 
Aggregated With Caching 
Disaggregated Without Caching 
Disaggregated With Caching 

Online 
98 (37%) 
104 (39%) 
114(55%) 
111(50%) 

Batched 
117(36%) 
111(34%) 
135 (49%) 
126 (46%) 
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5.4.3 A Supervised Learning Approach 

For comparison purposes, I ran a supervised machine learning analysis using 

decision trees with 10-fold cross validation in Weka [88] on the natural language and the 

processed compiler errors. As shown in Figure 5.2, the top level decision word was 

"pyramid" indicating a large number of questions about the pyramid assignment 

(assignment4 and assignment04). The final tree had 27 nodes and a size of 53. With a 

classification accuracy of 96/398 or 24%, it is actually less accurate than the same data 

run through the online learning framework, probably because the online learning 

framework can leverage recency. Slightly fewer questions were included in the 

supervised setting because questions with no terms were excluded to facilitate using 

existing software. 
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pyramid < 0.5 
j font < 0.5 
j | payment < 0.5 
j j j extens < 0.5 
j I j | cfsmissingimport < 0.5 
j j j j | insertaft < 0.5 
j j j j I | pointer < 0.5 
j I I j I I I quarter < 0.5 
I j I j I I I I amount < 0.5 
I j I I I I I I I namedcompon < 0.5 
I I I I I I I I I I start < 0.5 
I I I I I I I I I I I document < 0.5 
I I I I I I I I j I I I arrai < 0.5 
j j j j j j j j j j j j | cfsmethodmismatch < 0.5 
j j j j j j j j j j j j j | nothavebeeniniti < 0.5 
I I I I I I I I I I I I I i I dot < 0.5 
j j j j j j j j j j j I j j j | monthlypay < 0.5 
I I I I I I I I I I I I I I I I I part < 0.5 
I I I I I I I I I I I I I I I I I I equal < 1.5 
| I I I I I I I I I I | j j | I I I I test < 0.5: Positioning pyramids 2+3(12.0/212.0) 
j | | | | | | | | | | | | j j j j j | test >= 0.5: Test Cases(4.0/7.0) 
j j j j j j j | j j j j j j j j j j equal >= 1.5: Gameword equals method(2.0/0.0) 
I I I j I I I I j I I I I I I I I part >= 0.5: Constructor stubs(2.0/0.0) 
I j I j j I j I I I I I I I j j monthlypay >= 0.5: Mortgage calculation(2.0/0.0) 
j | | | j j | j j j j j j j | dot >= 0.5: File extension extraction(2.0/0.0) 
j I I I j I I I I I I j I I nothavebeeniniti >= 0.5: Variable initialization^.0/0.0) 
j I I j j I I I I I I | | cfsmethodmismatch >= 0.5: Class and method mismatch(6.0/13.0) 
I I I I I I I I I I I I a r r a i > = 0.5 
I I I I I I I I I I I I I rectangl < 0.5 
I I I I I I I I I I I I I I file < 0.5 
I j I I I I I I I I I I I I I revers < 0.5: Array index out of bounds exception(3.0/8.0) 
I I I I I I I I I I I I I I j revers >= 0.5: Incompatible types(2.0/0.0) 
I I I I I I I I I I I I I I file >= 0.5: Unique files structure(3.0/2.0) 
I I I I I I I I I I I I I rectangl >= 0.5: findSmallest structure(3.0/1.0) 
I j I j I I j I I I I document >= 0.5: JavaDoc documentation generation(3.0/1.0) 
I j I I I I I I I I start >= 0.5 
I I I I I I I I I I I assign < 0.5: get shortest path structure(3.0/9.0) 
I j I I I j I I I I I assign >= 0.5: Getting started(5.0/0.0) 
I I I I I I I I I namedcompon >= 0.5: Named Component(4.0/2.0) 
I I I j I j I I amount >= 0.5: Mortgage calculation(3.0/0.0) 
| j | I I j j quarter >= 0.5: ChangeToDollars(3.0/0.0) 
| j j j j j pointer >= 0.5: null pointer exception(3.0/0.0) 
j j j | j insertaft >= 0.5: Insert after node structure(5.0/1.0) 
| j | j cfsmissingimport >= 0.5: Missing import statement(6.0/2.0) 
j | j extens >= 0.5: File extension extraction(6.0/0.0) 
j j payment >= 0.5 
j j | mortag < 0.5: Mortgage calculation(8.0/0.0) 
| | | mortag >= 0.5: Test Cases(3.0/0.0) 
j font >= 0.5: Using fonts(10.0/1.0) 
pyramid >= 0.5 
| method < 1.0: Positioning pyramids 2+3(29.0/3.0) 

Figure 5.2. Decision Tree 
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CHAPTER 6 

CHALLENGES IN COLLECTING DATA 

The data collection tool (software artifact) and the analysis framework are both 

contributions that are described in great detail in previous chapters of the dissertation. 

The data are also described in a previous chapter, but without much discussion of why it 

is an important contribution and why it is challenging to acquire the kind of data required. 

This chapter describes why it is difficult to do the kind of research described in the 

dissertation and explains in greater detail why the data are a valuable contribution in their 

own right. The final section speculates about how the data might be used in future 

research. 

6.1 Dearth of Existing Data 

Although many papers have been written both on the broader topic of tutorial 

dialog and on the narrower topic of automatically answering student questions, it is not at 

all clear that the results transfer to other domains, platforms, and educational settings. 

6.1.1 Single Domain Systems with Paid Subjects 

At least two of the longer lines of tutorial dialog research have focused on a single 

domain, and they have used paid subjects. The CIRCISM project [29] focused on 
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tutoring medical students on circulation, and the JavaTutor project [17] is focusing on 

tutoring students in Java. Both projects collect data by paying subjects to participate in 

tutorial dialogs, usually in a wizard-of-oz style study with the tutor and student in 

separate rooms. Such studies are very expensive to run because an expert must be paid to 

tutor the student and the student must be paid. Furthermore, recruiting students to 

participate can be expensive and difficult, and some psychology research suggests that 

paying subjects can alter results (e.g., [68]). While such a setting generates many more 

dialog turns than a traditional classroom or laboratory setting, it is not clear that the 

results of such studies generalize to more traditional and economical educational settings. 

6.1.2 Tutorial Dialog Linked to Model Tracing Tutors 

Other longer lines of tutorial dialog research include the AutoTutor project (e.g. 

[84]) and the WHY-2 projects (e.g. [79]). Both of those have explored more than one 

domain, but the number of domains is still very small (approximately three). Most of 

their tutorial dialog appears to be tutor-initiated instead of student-initiated, and it appears 

that the tutoring prompts contain significant vocabulary to scaffold student responses. 

These systems also often depend on a relatively tight connection to a complicated 

tutoring system such as a model-tracing tutor, which are known to be expensive platforms 

in which to engineer educational content. As a result, their research is often based on 

only a few problems that might be covered in a week instead of being based on the 

spectrum of problems that would be covered over the course of a semester. The 

scalability of such a system over a larger curriculum is debatable at best. 
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6.1.3 Potential Problems with Processing Existing Data 

Data collection is full of trade-offs and design decisions, including grain size, 

raw feature set, and taxonomies for tagging. Much existing data on the questions that 

students ask is situated in extremely rich, but difficult to mine tutorial dialog, and at least 

some of the projects have not released their raw data to the larger research community. 

For example, the JavaTutor corpus consists of both free-form tutorial dialog with 

programming experts and keystroke data from beginning programmers. That corpus is 

not currently publicly available, but if it were, to be usable for a replication study on 

question classification, the questions and answers would have to be extracted from the 

dialog, probably manually. Then, the answers would have to be tagged according to the 

same taxonomy, again probably manually. Then, at least part of the data would have to 

be tagged again to establish interrater reliability. Only then would it be possible to 

attempt to replicate the automatic classification of questions. 

6.1.4 General Problems with Extracting Questions from Tutorial Dialog 

The questions asked in a tutorial dialog may differ from the questions that 

students ask spontaneously in a classroom. The questions in tutorial dialog appear to 

suffer from a stream-of-consciousness problem that is typical of think-aloud protocols. 

Such a setting can create a social pressure to communicate, and any questions collected 

may not reflect a genuine information need. Questions from tutorial dialog often fail to 

reflect distinct points of difficulty in the learning process, making it difficult to isolate 

students' most challenging questions. In summary, the questions in tutorial dialog may 
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differ substantially from the questions that they ask spontaneously when they have a 

genuine information need. 

6.2 Difficulties of Collecting Data 

6.2.1 The Quantity Problem 

Students do not ask questions very often. One estimate in the literature for 

elementary students is an averate rate of "one question per hour" [35, 56]. This 

dissertation had a similar data collection rate for a much older student population. One 

on one tutoring and other settings in which the instructional staff prompts the student 

appears to increase the rate of question asking, but even with additional prompting 

students do not ask very many questions, and the quality of the questions is somewhat 

lower [35, 56]. Furthermore, as this dissertation has demonstrated, the majority of the 

questions are often asked by a few students, with the majority of students never asking 

any questions. The difficulties of studying the questions that students ask and generating 

scientifically valid results with meaningful measures of statistical significance have 

exacerbated the dearth of existing data. 

6.2.2 The Quality Problem 

Not only do students ask questions infrequently, the questions that they ask are 

often poorly articulated and impossible to answer out of context. This makes 

automatically identifying and answering such questions difficult, and it also complicates 

research to accomplish these tasks automatically. For example, students might say "I'm 
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stuck." Such a sentence clearly carries two implied questions, 1) "Did I do something 

wrong?" and 2) "What is the next step?", but a computer program looking for simple, 

shallow features such as a question mark may fail to recognize that "I'm stuck" is even a 

kind of a question. Furthermore, a question such as "I'm stuck" requires some context to 

answer. At a minimum, the requirements are a model of an ideal solution, the student's 

partial solution, and a method for aligning the two in order to identify deficiencies. In ill-

defined domains, such as programming where there are multiple correct solutions, an 

additional step is necessary to choose the best solution for the current student. 

6.2.3 Lack of Existing Tools 

The difficulty of collecting data is compounded by a lack of adequate existing 

tools. Little research funding exists to promote the creation of good tools, and most 

existing tools are hacked together compounds that rely on several existing pieces of 

software. For example, the Marmoset project captures snapshots of student code (e.g. 

[73]), Marmoset functions as a plugin in the Eclipse environment using CVS repositories. 

To use Marmoset, the end-user must install CVS, Eclipse, and Marmoset, three separate 

installations, and root access would probably also be necessary to deploy the software. 

The requirement of root access would make modifying the software difficult and induce 

an extra dependency in the software update cycle. Additionally, the software 

dependencies make it unsuitable for introductory classes that use another IDE such as 

BlueJ. At least Marmoset is an open source project which would facilitate obtaining the 

source code. Other projects, such as AutoTutor, are not open source, and the source code 
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is not available. Recent effots have attempted to create an open source version of 

AutoTutor. Sometimes the tutoring system is available only as an executable, making it 

impossible to modify the functionality and run the desired experiment on a particular 

tutoring platform. 

6.2.4 Obtaining Approval 

One of the great difficulties in collecting data for any kind of human subjects 

research is simply obtaining the necessary approval. The Institutional Review Board 

(IRB) approved the experimental design. Collecting data in a traditional laboratory 

setting as part of traditional laboratory activities helped the study to qualify for an 

expedited review and also allowed me to avoid collecting consent forms, two additional 

obstacles that would have had to have been leaped with different protocols. I worked 

closely with both my advisor and his PhD student who were teaching the introductory 

course when I was designing the software to insure that it would have instructor approval. 

Although I needed instructor approval to deploy the software in a course, the instructor 

did not actually use the software much at all. Instead, the teaching assistants utilized the 

software. After an initial deployment or two it became obvious that the experimental 

protocol would need to be relaxed at least a little bit to meet their needs. For example, 

the original protocol required the TAs to tag the data and author answers and both of 

those requirements were removed. Also, the TAs were still allowed a high degree of 

interaction with students, including spoken dialog, that was not captured. Finally, the 

software needed to provide at least some benefits to students. The major benefit for 
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students was the ability to ask questions remotely, and there is some anecdotal 

evidence that it was effective for at least some students. By allowing all students in the 

class to use the software, ethical issues over access were avoided. To ensure that all 

students and TA's knew how to use the software, I ran training sessions as part of one of 

the required weekly labs at the beginning of both semesters in which the data was 

collected. 

6.2.5 Authoring Answers and Tagging the Data 

One concern that the TAs had was that authoring answers to questions was time-

consuming, and it was not practical when several students were waiting to answers for 

questions. Because I was not actually recycling answers, I told the TAs that they did not 

need to have the answer recorded, reasoning that I could author answers later when I was 

ready to deploy the system with automatic answers. The TAs also had a difficult time 

identifying when two questions were similar. Part of this was my fault; I did not 

explicitly train them or give them a specific taxonomy to be used when classifying 

similar questions. After researching the literature, I realized that compiler errors alone 

could be classified in many ways, and there were even more options for free form student 

questions. One key choice in developing a taxonomy is where to aggregate and where to 

disaggregate, and existing research does not agree on this matter. After spending many 

days studying student questions, I bailed on attempting to define a formal taxonomy, and 

I simply labeled each question with a word or short phrase describing how I would 

answer the question or describe the error, such as "capitalization" or "getNext methohd." 
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Because I had tagged the questions in a somewhat subjective manner, I needed another 

human to tag at least some of the data so that I could calculate interrater reliability and 

ensure that the labels were capturing a real aspect of the data and not just my 

imagination. Because the tagging process involved matching a question to a previous 

question, tagging the data alone probably required several weeks of full-time human 

attention. 

6.3 Requirements for a Software Tool to Collect Data 

This dissertation is based on a dataset of 411 questions. Although spontaneous 

student questions are rare, the cost of collecting the questions manually may have been 

less than the cost of creating a tool to collect the data. The chief advantage to developing 

a tool is that it will simplify future data collection efforts and future wider-scale 

deployments. This section explains the software requirements for such a tool and 

describes some of the difficulties in developing such a tool. 

6.3.1 Robust 

Data collection took place over more than 20 hours per week when TAs were on 

duty, and being available to support the software in person 20 hours a week was not 

realistic. That meant that the software needed to be robust enough that both TAs and 

students could use it without additional software support, and the software had to be 

available when I was not available. Because the software ran on the web and utilized the 

web-server, it was important that it be fairly stable and manage resources well. Early 
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versions of the software crashed the web server that was servicing online classes and 

that caused problems. Later versions of the software were subject to resource 

management reviews. Additionally, because several students may need to ask a question 

at once, the software needed to be tested by several students simultaneously. TAs helped 

with preliminary versions of multiuser testing, and I attended and led training sessions as 

part of a weekly laboratory at the beginning of each semester that provided additional 

opportunities to stress test the system for resource management. 

6.3.2 Simple Interface 

One original goal of the system was to create software that could be used by a 

variety of users in a variety of domains. Because most educators and students cannot 

program, the interface could not require students to program or require teachers to 

program. The only operations that teachers or students have to be able to do to use the 

system are a limited amount of typing, a limited amount of file system browsing, and 

clicking a button on an interface. To accommodate advanced instructors who know how 

to program, the interface would accept the URL of a program or webpage with an applet. 

I also worked closely with several TAs to determine what features were useful and not 

useful for them. 

A key functionality required for my research was the ability to transfer an entire 

folder of data easily. Students working on introductory programming projects often 

create several files in the same folder for a single assignment, and dependencies often 

exist between the files, making it necessary to collect all of them. While several options 
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exist for transferring a single file, no tools that I am aware of facilitate transferring an 

entire folder of data. The simplest existing option involved zipping a folder, transferring 

it, and then requiring it to be unzipped on the other side, a set of operations too laborious 

to expect of a student every time they needed to ask a question. I also needed a queue to 

track students and manage several students. While existing chat and personal messaging 

applications facilitate communication in a one-on-one or grop setting, they do not 

generally include queuing functionality, and they could not be utilized in the very real-

world setting of a typical introductory programming class where a half a dozen students 

all wish to ask a question and hope to receive an answer as quickly as possible because 

they are racing against the clock to finish their assignment before the deadline. 

6.3.3 Modular 

A key design goal was to make the system modular and indepdendent, and the 

system was at least partially successful in this goal. The analysis software has a pretty 

clean separation from the data collection software, and the analysis software can analyze 

the same dataset in several ways and compare them. Unfortunately, the data collection 

software could be more cleanly separated into separate modules, and the analysis 

software could also be more cleanly separated into separate modules. One problem with 

the TA interface is that it displays the students' code, but does not provide compiler error 

feedback or syntax highlighting. After serious thought, I have concluded that the VTA 

system is not meant to be a web-based interactive development environment (IDE), and 

the elements of the software that display student code and compiler error messages will 
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probably be factored out in future versions. One reason to try to make the system 

indepdendent of other systems was to avoid issues in versioning. For example, I 

considered making the system a BlueJ plugin, but there are several versions of BlueJ, 

even just in the on-campus laboratory that students use at the University of Utah, and 

probably even more considering all of the personal laptop configurations. Different 

versions look for plugins in different locations, creating installation problems for a plugin 

system. Other software dependencies have potential for additional versioning problems, 

so the system was designed to avoid software dependencies to the extent that it is 

possible to do so. One major advantage to implementing the system in Java is that Java 

runs on Macintosh, Windows, and Linux platforms, increasing user choices. 

6.4 A Brief Description of the Data and its Uses 

The dataset described in this dissertation consists of 411 spontaneous questions 

asked in a laboratory setting in an introductory computer science course. The majority of 

the questions were asked by only a few students in the course as shown in Chapter 3 

along with other summary statistics. The remainder of this section describes two subsets 

of the data collected, the portion that will be publicly released and the portion that will 

remain proprietary for now along with an explanation of why not release it. 

6.4.1 The Publicly Released Data 

One goal in publicly releasing as much data as possible is to facilitate replication 

experiments, and the data in the public release set has been carefully selected in order to 
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achieve that goal. The publicly released data include a set of 411 questions 

spontaneously asked by students while completing programming assignments. 

Specifically, the dataset includes the natural language of the student questions, the 

assignment, the timestamp, the original and the processed compiler errors used in the 

analysis, and the tags for the answer category. The vast majority of those questions were 

collected from students working in a laboratory setting as evidenced by the machine 

names. Additionally, the stopword list and symbol list are available to facilitate 

replication studies 

6.4.2 The Privately Retained Data 

In addition to the publicly released data, some data must be privately retained. 

For example, the identities of the students and the TAs cannot be released for ethical 

reasons. The source code is not being released because it would be difficult to 

anonymize it. (Anonymizing source code is probably an independent PhD project.) 

Although these data are not currently available to the public, I am still hoping to use at 

least some of them for future research projects such as clustering student code. 

6.4.3 Uses of the Data 

The data could potentially be used in at least two different kinds of experimental 

settings. One possibility is to use the data with existing analyses to close the gap between 

theoretical belief and empirical knowledge. For example, the analysis from a recent 

paper on the subjectivity of questions could be repeated with this data set to determine if 
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the same markers are valid for questions collected in a more traditional educational 

setting. The data could be used in future meta-analyses on tutorial dialog to discover 

commonalities and differences by comparing it with data from other tutorial dialog 

systems. Finally, the future will bring discoveries of new analysis techniques which may 

also be applied to this data. Having multiple data sets on which to test a theory or model 

decreases the risk of overfitting and broadens the set of claims that it is possible to make. 
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CHAPTER 7 

CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS 

7.1 Contributions 

7.1.1 The Virtual Teaching Assistant System (Software Artifact) 

First, the dissertation describes a unique software artifact called the Virtual 

Teaching Assistant system that mediates the question-answering process between 

students and staff and facilitates logging and mining the relevant data. This software 

system captures the natural language in the questions that students ask as well as the 

source code snapshots and context such as the date and assignment that the student is 

working on. The artifact has been utilized by several dozen students, and it is a suitable 

platform for future research on the questions that novice programmers ask. 

7.1.2 A Set of Student Questions 

Second, the dissertation describes a dataset consisting of ecologically valid 

questions asked by students in an introductory programming class, including the dates 

and the assignments about which the questions were asked. This dataset enables 

investigations of patterns in question asking within a course. The dataset also contains 

source code and compiler errors. The data are stored in a combination of a database file 

system that are organized to facilitate mining the data. The ease of mining the data and 
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platform independence is a key distinguishing features of this dataset compared to 

many other datasets with source code snapshots. Also, the fact that it consists entirely of 

spontaneously asked student questions make it suitable for future studies comparing the 

language in various other tutorial dialog scenarios including human-computer dialog, 

human-human dialog, and other non-tutorial sets of questions and answers, such as 

corpora from corporations. 

7.1.3 An Online Analysis Framework 

Third, the dissertation describes an analysis framework and an analysis showing 

that the additional context including the date and the assignment number can be 

leveraged to improve the classification of questions that students ask. An online learning 

framework is a viable alternative for an automatic question answering system, answering 

a similar number of questions as a batched or supervised setting when doing a similar 

analysis. Many modern intelligent tutoring systems require extensive knowledge 

engineering and/or they must be trained with data that has been harvested from a 

deployed system. The disadvantages to the former alternative are that the system 

designers must try to foresee every question that a student could ask, and the cost of 

engineering knowledge for the system is typically high. The disadvantage to the latter 

alternative is that the system does not benefit students as much in the year while data are 

being collected. The online learning framework reduces both of these disadvantages by 

waiting until a student has asked a question to engineer knowledge, and then potentially 

exploiting that knowledge immediately after it has been added to the system. 
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The central question of the dissertation is "Can domain knowledge and 

educational context improve classification of the questions that students ask in a novice 

programming class?" Using natural language and cosine similarity as a non-trivial 

baseline, I answer this question in the affirmative by improving accuracy by using 

domain knowledge (processed compiler error messages) and educational context 

(assignment number). I replicate previous results showing that answer caching can 

improve accuracy by 1-3% and extend previous work on answer caching by achieving 

similar improvement on a more difficult dataset with ecologically valid tutorial dialogue. 

Using domain knowledge, answer caching, and educational context, the algorithm 

can classify between 23% and 56% of the questions. In the baseline condition with 

natural language and cosine similarity, the algorithm classifies 96 questions correctly or 

35% of the repetitive questions and 23% the total questions. Using processed compiler 

error messages and answer caching, the algorithm classifies 104 questions or 25% of the 

total questions and 39% of the repetitive questions. When disaggregating by assignment, 

the algorithm classifies 113 questions correctly or 28% of total questions and 56% of 

repetitive questions. By exploiting strengths of both approaches, the algorithm can 

classify 119 questions or 29% of total questions and 36% of the repetitive questions. 

The analysis shows that the natural language or the compiler errors alone are 

inadequate to classify student questions. Rather, it is the combination of those features 

plus other features such as temporal locality that improve classification accuracy. The 

dissertation shows that temporal locality is an important features in educational questions, 
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and that a least recently asked question is almost as likely to have the correct answer 

as a question with a high similarity score. 

7.2 Future Work 

The majority of the research described in this dissertation is focused on a 

particular research question, "Can domain knowledge and educational context improve 

the classification of student questions?" The dissertation answers that question in the 

affirmative for introductory computer science, but leaves many research questions 

unanswered. 

For example, it is reasonable to suppose that if the VTA system were deployed in 

a mature course with a stable portfolio of instructional activities and assignments, the 

percentage of novel questions would eventually plateau, perhaps over the course of two 

or three years. A longitudinal study to determine where in time that plateau occurs in 

time would answer the questions "How long does it take to train the VTA system?" and 

"How many questions can it classify automatically when it is fully trained?" 

Furthermore, the extra data collected in such a setting might enable the system to 

leverage the benefits of both answer caching with error messages and disaggregation by 

assignment for an extra boost in accuracy. Deploying the system in other courses besides 

introductory computer science could help answer questions about how question asking 

behaviour varies across courses and domains, and also reveal whether or not there are 

differences in the number of repetitive questions asked. 
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In summary, this research raises many research questions about the questions 

that students ask. In the remainder of this section, I describe relevant areas of future 

work that pertain less directly to the questions that students ask, but are important for 

understanding their help seeking behaviour and opportunities for intelligent interventions 

to assist them. 

7.2.1 Metacognition 

A good teaching assistant can provide answers to the questions that students are 

asking. A great teaching assistant anticipates the questions that a student should be 

asking and provides an answer even when the student fails to provide a prompt. Such a 

teacher can tutor a student not only in cognitive skills but also in meta-cognitive skills. 

Early work on metacognition has defined two categories of novice programming 

behavior. "Stoppers" are "unwilling to explore the problem further", while 

"movers...[try] to repair code in ways that... will not work."[59]. Chad Lane's PhD 

thesis [53] showed that novice programmers using the Java langauge also fail to realize 

that they need help. His tagged data could be utilized in a machine-learning experiment 

to train a classifier that can distinguish between students who are productively engaged 

and on task and students who are in need of assistance from a teaching assistant, human 

or virtual. Jaime Spaaco has also examined novice programming and produced a dataset 

that could be utilized in metacognitive work for novice programmers [73]. Additionally, 

the dataset used for my own thesis could be analyzed to produce a set of indicators that 

students need help. Other related work in metacognition beyond the programming 
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domain includes papers by Roll [65], Aleven [3], and Rebolledo-Mendez [62, 63]. 

Collectively, these papers suggest that students in several domains are in need of 

metacognitive tutoring and research in this area is likely to be broadly applicable. 

However, many people in the Intelligent Tutoring Systems and Artificial Intelligence in 

Education communities consider learning gains the gold standard as demonstrated by an 

award-winning paper [80], and linking metacognitive tutoring to learning gains remains 

an elusive goal [65]. 

7.2.2 Intervention Evaluation 

There are several reasons that introductory computer science students may need 

an intervention. Students enter Computer Science 1 with varying levels of expertise; 

many need remedial help just to get caught up with their peers who have had more 

programming experience. Some students need multiple encounters with a skill to learn it 

well, but many assignments involve a single encounter with a skill or a single application 

of a skill. Students may need additional instruction to understand the motivation behind a 

skill. Finally, some students may benefit from new forms of user-targeted instruction 

(e.g., animation clips) that computers utilize to improve engagement in education. 

Unfortunately, not all interventions were created equally, so there is a need to 

evaluate interventions. For example, previous research has shown that in one group of 

interventions, a couple of the interventions were substantially less effective than the 

majority [39]. Inspired by the randomized trials and embedded experiments of the 

Project LISTEN Reading Tutor [55], the architecture of the VTA system could easily be 
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modified to allow educational scientists to collect or create a number of interventions 

and measure their relative efficacy in answering student questions. Once interventions 

have been evaluated, the less effective interventions can be taken out of the pool and 

replaced with new interventions or interventions that are known to be more effective. 

Extensions may include a general framework for organizing interventions and 

describing them based on several criteria, such as expected prior knowledge, ease of use, 

student satisfaction, student learning gains, and others. In some ways, this part of the 

system could work like traditional recommender systems used on websites for travel, 

movies, and other hobbies. An external mechanism for interventions that are text or URL 

based is expected to be much better than more traditional internal interventions because 

intervention designers will not need to be intimately familiar with the tutoring system, 

and they will be able to create interventions with the web-based tool of their choice on 

the development cycle of their choice. Finally, the approach outlined by the dissertation 

separates the diagnosis of the student's problem from the selection of intervention, so that 

intervention designers do not have to worry about breaking the system when they create 

interventions. 

7.2.3 Missing Sigma 

One of the original justifications for much of the tutorial dialog work done in the 

last two decades was that perhaps tutorial dialog could close the gap (the so-called 

missing sigma problem) between traditional model tracing tutors and expert human 

tutors. Previous work has shown that a tutoring system that has been augmented with 



www.manaraa.com

112 
natural language tutoring is more effective than the same system without natural 

language tutoring. However, based on effect sizes alone, model tracing tutors (e.g., 

Andes or the Algebra Tutor with learning gains of 1.2 [80]) have produced higher 

learning gains than natural language tutoring (e.g., AutoTutor with learning gains of 0.9 

[36]). To further add to the confusion, recently VanLehn has argued that step tutoring (or 

model tracing tutoring) is equivalent to natural [language] tutoring, and that both are 

more effective than answer-based tutoring [77]. Although making comparisons between 

the two approaches can be thought-provoking, neither one has fully matured, and trying 

to definitively evaluate them is roughly comparable to predicting which of two third 

graders is going to be a taller adult based simply on their height in the third grade. 

Modern tutoring systems are not bad, but they still make many silly mistakes 

compared to an expert human tutor. For example, they allow students to game the system 

and extract the answer without learning [11], and they frequently use sub-optimal 

strategies [39]. Their dialog classification skills are weak, and they don't process natural 

language as well as humans do. On the other hand, the computer has an amazing capacity 

to retrieve facts and execute algorithms consistently, and in these two areas computers are 

substantially better than humans. More research is needed to better understand how to 

leverage the strengths of the computer and compensate for its weaknesses specifically in 

the area of tutoring. 
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7.2.4 Support for Peer Tutoring, Computer-Based Collaboration 

As computing has become more pervasive and computation has extended beyond 

the individual desktop, interest has increased in computer supported collaborative 

learning and peer tutoring. Early research in this growing field appears promising. 

Future research may include designing algorithms to assess student progress on a 

problem and pairing the student asking the question with another student who is likely to 

be able to help the student, perhaps by completing a peer tutoring script together. 

Additional support may even identify and adequately recognize or even reward the most 

helpful student peers. Another approach may allow the system to automatically identify 

groups of students who have the same concern, allowing the TA to teach the entire group 

at the same time. 

7.2.5 Usability Issues 

A number of usability questions on both the teacher and the student side must be 

answered before an automatic question answering system can be deployed in a classroom 

setting. On the teacher side, research is needed to determine if training the teacher can 

improve and speed up the necessary process of tagging an initial set of questions to train 

the classifier. Additional research may investigate if automatic measures such as 

question similarity can be exploited to facilitate that task. Once automated interventions 

are added, the teacher will need to determine if the student still needs human help 

because the system classified the question incorrectly or because the automated 

intervention was ineffective. On the student side, studies should investigate whether or 
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not a drop-down menu of frequently asked questions can help students who articulate 

their questions poorly. Additionally, students may not accept automated answers to their 

questions, especially if they know that a human TA is on duty and available. 

7.2.6 Teaching and Grading Support 

Automated grading has been a popular research topic at SIGCSE for several 

years. One set of automatic grading tools has already been used in cheating detection 

[28]. Automated grading may allow students to receive real-time evaluations of their 

work and reduce the amount of time human TA's are required to spend grading course 

materials. The likelihood that such an automated tool could provide impartial, unbiased, 

fair evaluations to all students increases the appeal of automated grading. Another 

appealing possibility with automated grading is a teacher tool that can automatically 

highlight aspects of the assignment that students found most troubling, so that teachers 

can spend extra time reviewing these matters with the current class and provide extra 

teaching to future classes. 

7.2.7 Classification Schemes for Questions that Novice Programmers Ask 

Given a set of categories, classifying questions appears to be relatively 

straightforward for humans. However, no widely accepted set of categories or taxonomy 

exists for the questions that novice programmers ask. Previous work has suggested either 

42, 88, or 226 different categories for compiler errors [2, 42, 76], and compiler errors 

only account for less than half of the questions in the data set utilized for this dissertation. 
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Those papers are simply trying to classify compiler errors based on the compiler error 

message, not the underlying misconception the student has expressed. Furthermore, a 

single piece of code may have multiple issues. Consider a typical problem asking a 

student to write code to determine the max in an array of integers. The student may 

attempt the problem with partially complete code as follows: 

public static int findMax(int [] a){ 
int max=0; 
while(){ 

if( <max){ 

Such a piece of code suggests that the student perhaps began the problem, reached a 

partial impasse while creating the loop, and a full impasse while working on the 

conditional. Ideally, the student would have requested help at the point of the partial 

impasse, but students frequently appear to wait until they have reached a full impasse 

before requesting help. The resulting code has multiple problems. From the perspective 

of the compiler, there is an "illegal start of expression." From a syntactic perspective, 

the curly braces are not balanced. From a planning perspective, the student does not 

appear to know how to construct a loop. Furthermore, these various errors do not lend 

themselves to placement in a hierarchy. "Illegal start of expression" problems can occur 

in many kinds of methods. 

To further complicate question classification, many students seem to avoid asking 

directly about their code, generating distracting natural language garbage. In this 

research, such questions would have probably been assigned a label such as "findMax 

structure," but that is clearly a composite label that encompasses a broad range of 
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problems. Work on classification schemes that allow free-response student-input to 

be assigned multiple, more-fine-grained designations would be applicable for question 

classification as well as other problems. That research will probably also require work on 

partial parsing, and other approaches for handling poorly formed student input that 

cannot be parsed with readily available tools. 

Dealing with student input that contains more than one error remains a difficult 

open research problem. The research described in this dissertation partially bypasses that 

problem by allowing "complex problems" composed of multiple smaller problems and 

focusing on the most urgent problem, e.g., the problem causing the first compiler error. 

7.2.8 Student Retention and Efficiency 

The research to be completed for the thesis must be completed in a relatively short 

time period that makes longitudinal studies unrealistic. However, as automated 

answering systems and other forms of intelligent tutoring become a more integral part of 

the college course experience, it will be important to study the effect that these tools have 

on long-term student retention and student efficiency. Student retention and student 

programming efficiency may be strongly linked in introductory computer science where 

many students who drop out complain about long hours, often long hours of staring at a 

computer screen with little productivity. An extended version of the thesis work could be 

utilized in such a long-term study to determine if such automated tools help or hurt 

students in achieving short-term efficiency and proficiency and long-term success. 
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7.3 Conclusions 

My classification methods work over half the time for repetitive student-generated 

questions, assuming that the questions can be separated by assignment. Thus, my 

methods would work particularly well in a course in which the same assignments are 

used over and over, and the long-term goal of using a classification-based approach to 

automatically answer questions would be especially valuable in a course in which 

students have low access to course staff. These two conditions are typical of online 

classes, which represent a fast growing segment of courses in higher education. 

The future of education is a large puzzle with many pieces still in development. 

Video streaming technology makes it possible to broadcast lectures to a large audience, 

and the internet has the potential to reduce or eliminate the cost of textbooks. However, 

to encourage students to engage in large classes and online classes, we need more 

automatic tools to process their input in a scalable and timely manner, and these kinds of 

tools represent major missing pieces. This dissertation has helped to define one of those 

missing pieces, namely the elements of an online system to automatically answer student 

questions by recycling answers to previous questions. 
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