
www.manaraa.com

TOWARDS A VIRTUAL TEACHING ASSISTANT TO

ANSWER QUESTIONS ASKED BY STUDENTS

IN INTRODUCTORY COMPUTER SCIENCE

by

Cecily Heiner

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2009

www.manaraa.com

UMI Number: 3377899

Copyright 2009 by
Heiner, Cecily

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3377899

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

Copyright © Cecily Heiner 2009

All Rights Reserved

www.manaraa.com

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Cecily Heiner

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

q/u/oq

£J7x/ol
Ellen Riloff

I (L
Joseph Beck

I M De yle Lonsdale

www.manaraa.com

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Cecily Heiner m j t s finaj
form and have found that (1) its format, citations, and bibliographic style are consistent
and acceptable; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the supervisory committee and is
ready for submission to The Graduate School.

Date
Q. \ihjo<\

Approved for the Major Department

M-fl %^-
Martin Berzins

Chair/Dean

Approved for the Graduate Council

Dean of The Graduate School

www.manaraa.com

ABSTRACT

Students in introductory programming classes often articulate their questions and

information needs incompletely. Consequently, the automatic classification of student

questions to provide automated tutorial responses is a challenging problem. This

dissertation analyzes 411 questions from an introductory Java programming course by

reducing the natural language of the questions to a vector space, and then utilizing cosine

similarity to identify similar previous questions. I report classification accuracies

between 23% and 56%, obtaining substantial improvements by exploiting domain

knowledge (compiler error messages) and educational context (assignment name). My

results are especially timely and relevant for online courses where students are

completing the same set of assignments asynchronously and access to staff is limited.

www.manaraa.com

for my students

www.manaraa.com

And the King shall answer and say unto them, Verily I say unto you, Inasmuch as ye
have done it unto one of the least of these my brethren, ye have done it unto me

--Matthew 25:40

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT iv

ACKNOWLEDGEMENTS ix

CHAPTER

1. INTRODUCTION 1

1.1 Problem 3
1.2 Contributions 4
1.3 Overview 5
1.4 Data 6
1.5 Analysis 7
1.6 Results 8
1.7 Summary 11
1.8 Roadmap 13

2. PRIOR WORK 14

2.1 Information Retrieval 14
2.2 Classifying Questions from Novice Programmers 21
2.3 Tutorial Dialog 27

3. DATA 38

3.1 Historical Background 38
3.2 System Architecture Overview 38
3.3 Participants 44
3.4 Data Cleansing 46
3.5 Interrater Reliability 47
3.6 Dataset Statistics 48
3.7 Questions Per Assignment 50
3.8 Questions Per Student 52
3.9 Questions Per Category 52

4 . ANALYSIS 57

www.manaraa.com

4.1 Building a Matrix from Natural Language 58
4.2 Weighting the Vectors 60
4.3 Measure Similarity in an Online Learning Framework 61
4.4 Similarity Analysis 62
4.5 Compiler Output Processing 64
4.6 Answer Caching 68
4.7 Disaggregating by Assignment 69
4.8 Alternative Evaluations of Question Answering Systems 73
4.9 Synthesizing an Algorithm to Classify Questions 77
4.10 A Theoretical Cost and Benefit Analysis 79

5 . PERIPHERAL ANALYSES 82

5.1 Latent Semantic Analysis 82
5.2 Negative Results with Source Code 84
5.3 Skipping Steps to Increase Accuracy 85
5.4 A Trained System to Classify Student Questions 86

6 . CHALLENGES IN COLLECTING DATA 92

6.1 Dearth of Existing Data 92
6.2 Difficulties of Collecting Data 95
6.3 Requirements for a Software Tool to Collect Data 99
6.4 A Brief Description of the Data and its Uses 102

7 . CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS 105

7.1 Contributions 105
7.2 Future Work 108
7.3 Conclusions 117

REFERENCES 118

Vlll

www.manaraa.com

ACKNOWLEDGMENTS

My time during my master's degree was very influential in both my decision to

pursue the PhD and the general direction of my PhD research. I am grateful to Jack

Mostow who helped me learn how to write, Joseph Beck who helped me learn how to

analyze data, and other Project LISTEN staff during 2003-2005 for many important

research skills I learned from them. I am also grateful to several friends and classmates

who stretched their social circles to include me.

My committee has been incredibly supportive. Joe Zachary, my PhD advisor, has

been especially instrumental in nurturing my teaching skills. His kind concern for me

and my students has been a blessing during my PhD years. I also gratefully acknowledge

the many kind words he has written on my behalf in an effort to secure financial support.

Deryle Lonsdale's generous recommendations have helped me get into graduate school

twice, and his coursework continues to influence my teaching and research. Joseph

Beck's commitment to mentoring me has endured beyond the master's degree, and

discussions with him have been thought-provoking, action-stimulating, and generally

useful. Hal Daume has a great sense of humor, fine quantitative capabilities, and

excellent graduate level coursework. Ellen Riloff has helped me learn many things; I

continue to have a deep respect for her many accomplishments and her zeal for life.

www.manaraa.com

I have thoroughly enjoyed attending AIED, ITS, and SIGCSE as a graduate

student, and my interactions with people at those conferences have helped me to

understand what it means to be a colleague.

Peter Jensen and the entire CS1 staff at the University of Utah have been

supportive of my research, even though I have crashed the server more than once. Brent

Hosie's Undergraduate Research Opportunity Project enabled me to obtain inter-rater

reliability measures for my dataset and gain valuable experience as a research advisor.

My parents have been very generous with me during this period of my life. Four

months of living together after my master's degree has somehow turned into four years,

and they have not complained. They've been generous with physical, mental, emotional,

spiritual, and social support, and I'm grateful for the strong and loving family bonds we

share. I thought about writing this dissertation for them, but I concluded that they would

love me regardless of whether or not I wrote a dissertation for them.

I am dedicating this dissertation to my students past, present, and future. I am

optimistic that their lives will be better because I have been able to have this PhD

experience and learn how to be a better teacher, researcher, and person. As a mother

gives birth out of love for her child, I write my dissertation out of love for my students.

x

www.manaraa.com

CHAPTER 1

INTRODUCTION

Benjamin Franklin observed "The only thing more expensive than education is

ignorance" [31]. Education has become even more expensive since Benjamin Franklin

made this famous observation, with current college educations ranging in price from

$2,500 -$25,000 per semester for tuition alone. The cost of an education is increasing

faster than the rate of inflation, 2.9% per year after inflation [13]. An education often

means a better paying job, more fulfilling work, and better social connections. In

America, an education is critical to maintaining the democratic ideals of our forefathers.

Research that can help control the cost of an education is a prerequisite to preserving the

promise of equal opportunity for all.

The reasons for the high cost of a college education are numerous, but one of the

greatest contributors is the human resources, and specifically the teaching staff. To help

control costs, some colleges allow very large classes, especially for the introductory

material. Class sizes of between 100 and 1000 are typical of many freshman and

sophomore classes. One professor alone cannot hope to help that many students enrolled

in a single course, and frequently they find themselves lecturing and relying upon

teaching assistants (TAs) in order to evaluate the students, answer questions, and provide

www.manaraa.com

2
human contact. Although cheaper than a professor, these teaching assistants still

represent a major cost for the university. The School of Computing at the University of

Utah spent $320,671 for the salaries of teaching assistants in 2007-2008. In majors such

as computer science where students have access to lucrative internships and easy access

to financial aid, recruiting good TAs can be a significant challenge. Furthermore,

students will typically work as a TA for a semester or two, so most universities are

required to constantly recruit TAs, and they typically need to be retrained every semester.

Although the direct, cash costs of human TAs are much lower than the cost of professors,

the hidden, indirect costs are quite a bit higher including time to recruit and train them,

benefits including health insurance and tuition, and others.

Teaching assistants generally perform a number of important roles in a traditional

college course including lab or section leader, assignment grader, and personal tutor.

Teaching assistants most commonly act as a personal tutor during consulting hours in

which students are allowed to visit the TA at a predefined location at predefined hours.

However, finding a time that is suitable for both the TA and the student to meet can be a

challenge. Modern students have many more options when spending their time compared

to previous generations, and many students in this generation want their courses and

course materials available and accessible on their own time frame.

In recent years, the rise of electronic learning has provided a partial solution to

this growing problem. Electronic learning includes both online courses and technology

that supports learning such as e-mail and electronic bulletin boards. Compared to

traditional higher education with an enrollment growth rate of 1.5%, online courses are

www.manaraa.com

3
growing very rapidly; at 9.7%, the growth rate of online courses is more than six times

the traditional course growth rate [6]. Almost 3.5 million or 20% of all U.S. higher

education students were taking at least one online course in the fall of 2006 [6].

Unfortunately, online courses still have barriers, including a "lack of acceptance of online

instruction by faculty" and "students need more discipline to succeed in online courses"

[6]. E-mail and electronic bulletin boards are even more prevalent, but they also have

problems. E-mailed answers to student questions frequently require students to wait until

an instructor chooses to check e-mail and send a response (sometimes more than a day).

Electronic bulletin boards can be difficult to navigate and make it difficult for professors

to enforce a particular sequence in a tutorial dialog.

This dissertation describes a new approach to answering some student questions

automatically that has the potential provide immediate answers, improve navigation, and

enforce a particular sequence in a tutorial dialog. The ultimate goal is to create a system

that can provide automated answers to common questions that are similar to other

questions already in the system. This dissertation investigates the key component of such

a system: the automatic classification of student questions.

1.1 Problem

A comprehensive system for mediating student questions should have several

features. The system should help the students recognize when they need to ask a

question, classify the students' questions, provide automated interventions, and evaluate

the effect of the interventions upon the student. This dissertation focuses on the central

www.manaraa.com

4
problem in the pipeline, classifying student questions. Specifically, the dissertation

focuses on classifying the questions that novice programmers ask in an introductory

computer science course.

Classifying the questions that novice programmers ask in order to provide tutorial

interventions is a challenging open problem. Students often articulate their questions and

information needs incompletely. They also hedge, use colloquial language, misspell

words, and write ungrammatically. For example, the following are information requests

that novice programming students have made:

• "How do i return the file extension only?"

• "I need help extracting a file extension from a filename."

Although phrased differently, both sentences indicate the same need, namely help with

the file extension extraction problem; therefore, they should be classified the same way.

This research focuses on the problem of classifying student questions by matching them

to previous questions with similar meanings but different phrasings.

1.2 Contributions

This dissertation makes three contributions towards understanding the questions

that novice programming students ask. First, the dissertation describes a unique software

artifact called the Virtual Teaching Assistant system that mediates the question-

answering process between students and staff and facilitates logging and mining the

relevant data. This software system captures the natural language in the questions that

students ask as well as the source code snapshots and context such as the date and

www.manaraa.com

5
assignment that the student is working on. Second, the dissertation describes a dataset

consisting of ecologically valid questions asked by students in an introductory

programming class, including the dates and the assignments about which the questions

were asked. This dataset enables investigations of patterns in question asking within a

course. Third, the dissertation describes an analysis framework and an analysis showing

that the additional context including the date and the assignment number can be

leveraged to improve the classification of questions that students ask.

1.3 Overview

To facilitate the study of student questions in an introductory programming

course, I needed a corpus of the questions that students ask in that context. To collect

ecologically valid data, I built the Virtual Teaching Assistant (VTA) system and

deployed it in an introductory computer science course for a total of approximately one

semester. The system mediated help requests between students and teaching assistants

(TAs), capturing both the students' natural language and the corresponding code

snapshots associated with a help request as well as timestamps, the assignment name, the

answer, who answered it, and other relevant information.

Using this system, students typed input into a short form on a student software

client, including login, machine name, Java class, Java method, and the actual question.

Additionally, the students used a file chooser dialog to select the directory containing

their source code. When the students clicked a button to submit their question, the

system uploaded all of their code plus the accompanying information and question.

www.manaraa.com

6
Questions and student source code submitted to the system appeared in a

teaching staffs software client of the system, ordered by time of submission. A member

of the teaching staff could answer the question in person or via the system with a text or

URL response. The TA also indicated a category for each question. Then, the system

logged the answer and the category to a database along with the question. The answer

that the human TA gave was displayed in the interface of the student's software client.

To facilitate research, after the data were collected, each question was manually

categorized by one or more teaching assistants. This dissertation examines data collected

during approximately one semester of system usage.

1.4 Data

Questions asked in Introduction to Computer Science 1 (CS1410) at the

University of Utah form the dataset for this dissertation. Most students in Computer

Science 1 are age 18-22. Computer Science 1 is the first required computer science

course for computer science majors, with a strong emphasis on the Java programming

language. The course has long hours for novice programmers and typically high dropout,

fail, and withdrawal rates. The majority of students who take Computer Science 1 hope

to major in computer science or a related field, but they must pass that class along with

three other courses with sufficiently high grades to attain official status as a computer

science major. Although approximately 233 students were active in the course during the

study period, only 63 of them asked questions while using the study's logging software

during the study period.

www.manaraa.com

7
I tagged all of the data by associating all questions that could be answered with

the same response to the same, unique tag. Then an undergraduate TA tagged

approximately a third of the data, assigning tags from a set devised for that assignment.

The TA did not recode the other two thirds of the data, but because the inter-rater

reliability for the questions we sampled was high (Cohen's Kappa=0.872), I included all

of the data in the final dataset. This left a dataset of 411 questions from 13 different

assignments covering a total of 143 answer categories or information needs. Of the 411

questions, 268 of the questions (143 subtracted from 411) were repetitive in nature, and

had a similar previous question. That means that 66% of the questions were repetitive.

1.5 Analysis

Table 1.1 shows some sample student questions and the corresponding answer

categories. The primary analysis utilizes an online learning framework to identify similar

previous questions. Each question is compared to all previous questions, and the

previous question with the highest cosine similarity score when compared to this question

is considered the most similar. If the current question and the most similar question have

the same answer category, the system earns a point for accuracy. For example, in Table

1.1, Q2 would only be compared to Ql, and the system would not earn a point for

accuracy. However, Q5 would be compared to Ql, Q2, Q3, and Q4. Of these, Q2 would

be the most similar, and since Q2 and Q5 share an answer category, the system would

earn one point for accuracy.

www.manaraa.com

8
Table 1.1. Sample Questions, Vector Stems, and Answer Categories

01
Q2

Q3

Q4
Q5

Natural Language
How do i return the file extension only?
my variable for rectSideOne is suppose to be
1/9, the program is returning a 0 for this
calculation. I have no idea why.
I need help extracting a file extension from a
filename.
program is not computing volume correctly
Im having trouble understanding why (1/9)
equals 0.0 instead of
0.111111

Answer Category
File extension extraction
Integer division

File extension extraction

Integer division
Integer division

The analysis chapter also discusses new and novel methods for representing and

incorporating educational context and compiler error messages in the vector space model.

Specifically, I show that the compiler error messages must be processed in conjunction

with source code and data from the Internet to extract underlying errors, and a technique

called answer caching can be synergistically employed to improve classification

accuracy. The following chapter also describes auxiliary analyses, including a

comparison of the data across semesters and an investigation of a batched and supervised

learning approach to classifying the questions that students ask.

1.6 Results

As shown in Table 1.2 and Figure 1.1,1 report accuracy scores with two different

denominators, total questions (411) and repetitive questions (268). Total questions

includes the entire corpus of questions that the students asked using the VTA system.

The repetitive questions are questions that were asked more than once. Of these, only the

www.manaraa.com

9
Table 1.2. Sample Questions, Vector Stems, and Answer Categories

Baseline

With Error Msgs
and Answer Cache

Aggregated

Total Questions
93/411
(23%)

104/411
(25%)

Repetitive Questions
93/275
(35%)

104/275
(39%)

Disaggregated

Total Questions
113/411
(27%)

111/411
(27%)

Repetitive Questions
113/204
(55%)

111/204
(54%)

Classification Accuracy

8«
45.
40.

iES * o 30
3 O 25
O -a
<-> a>
£ ic
m —
£: w
Q) TO

Q .
O

20
15
10.
5.
0

00%
00%
00%
00%
00%
00%
00%
00%
00%
00%

a Total Questions

• Repetitive Questions

Baseline (Cosine With Answer With
Similarity with Caching and Error Disaggregation by

Natural Language) Messages Assignment

Classification Method

Figure 1.1. Classification Accuracy

repetitive questions bar could theoretically reach 100%. In all cases, the numerator is the

number of correct similar questions found.

1.6.1 Baseline

As a baseline, cosine similarity is applied to the natural language of the students'

questions. With that baseline, the algorithm can classify 96 questions or 35% of the

repetitive questions and 23% the total questions. For those questions, an answer to a

previous question could theoretically be recycled to answer that question.

www.manaraa.com

10

1.6.2 With Error Messages and Answer Caching

The low accuracy of question classification suggests room for substantial

improvement. One possible way to improve classification is to leverage some domain

specific knowledge, specifically the error messages from the compiler. Since more than

40% of the questions were submitted with code that did not compile, the compiler error

messages represent a source of substantial unused data. To incorporate the error messages

into the model, they were automatically processed to produce a term representing the

underlying error, such as "capitalization" or "missinglmport," and those terms were

incorporated into the model. To further boost accuracy, I leveraged a technique called

answer caching [58] in which questions with the same answer category are merged to

form a single vector. Without answer caching, the five questions in Table 1.1 are

represented with five vectors. With answer caching, they are represented with two

vectors, one for "File extension extraction" (the sum of the vectors for Ql and Q3) and

one for "Integer division" (the sum of the vectors for Q2, Q4, and Q5). The number of

correctly classified questions (or numerator) for the "With Answer Caching and Error

Messages" method is 104, and the denominators are the same as they were in the baseline

conditions, 411 for total questions and 268 for repetitive questions. In this condition, the

algorithm can classify 25% of the total questions and 39% of the repetitive questions.

1.6.3 Disaggregating by Assignment

For a final improvement in classification accuracy, the data was disaggregated by

assignment. Questions were compared only to other questions from the same assignment.

www.manaraa.com

11

As shown in Figure 1.1, this technique improved the number of correctly classified

questions (or numerator) to 113 or 28% of total questions and 42% of repetitive questions

With the data disaggregated by assignment, incorporating answer caching and

error messages reduced accuracy (101 questions classified correctly). The lack of

sufficient data to model different kinds of compiler errors is probably the cause of a drop

in accuracy when answer caching and error messages are incorporated. Because

compiler errors are being reduced to a single term, several of them are necessary to boost

the compiler error terms to a heavy enough weight to influence the similarity algorithm.

Excluding error messages and answer caching returns the classification algorithm to a

domain independent state. Compiler error messages are a source of data that are only

relevant in the computer science domain. By contrast, natural language and assignment

numbers are a data source that is available in virtually every educational domain.

To facilitate comparison in the bar charts, we reuse the same denominators, 411

total questions and 268 repetitive questions. When only comparing questions from the

same assignment, however, the number of repetitive questions is actually smaller (204),

and that denominator gives a classification accuracy of 56% of repetitive questions.

1.7 Summary

The central question of the dissertation is "Can domain knowledge and

educational context improve classification of the questions that students ask in a novice

programming class?" Using natural language and cosine similarity as a non-trivial

baseline, I answer this question in the affirmative by improving accuracy by using

www.manaraa.com

12
domain knowledge (processed compiler error messages) and educational context

(assignment number). I replicate previous results showing that answer caching can

improve accuracy by 1-3% and extend previous work on answer caching by achieving

similar improvement on a more difficult dataset with ecologically valid tutorial dialogue.

Using domain knowledge, answer caching, and educational context, the algorithm

can classify between 23% and 56% of the questions. Using just natural language, the

algorithm can classify 96 questions or 35% of the repetitive questions and 23% the total

questions. Using processed compiler error messages, the algorithm can classify 104

questions or 25% of the total questions and 39% of the repetitive questions. When

disaggegating by assignment, the algorithm can classify 113 questions correctly or 28%

of total questions and 56% of repetitive questions.

I also demonstrate that an online learning framework is a viable alternative for an

automatic question answering system because it can classify almost as many questions as

a similar algorithm in a batched setting. Many modern intelligent tutoring systems

require extensive knowledge engineering and/or they must be or trained with data that

has been harvested from a deployed system. The disadvantages to the former alternative

are that the system designers must try to foresee every question that a student could ask,

and the cost of engineering knowledge for the system is typically high. The disadvantage

to the latter alternative is that the system does not benefit students as much in the year

while data are being collected. The online learning framework reduces both of these

disadvantages by waiting until a student has asked a question to engineer knowledge, and

www.manaraa.com

13
then potentially exploiting that knowledge immediately after it has been added to the

system.

1.8 Roadmap

This chapter has proposed that a system to automatically answer the questions that

students ask has the potential to reduce the rapidly rising costs of a college education, and

it has given a brief overview of the research; the remainder of the dissertation gives much

more technical detail. Chapter 2 discusses related research from the fields of information

retrieval, computer science education, and intelligent tutoring. Chapter 3 describes the

software system that was used to collect ecologically valid data and it quantitatively and

qualitatively describes the data. Chapter 4 presents the main analysis showing that

domain knowledge and educational context can improve the classification of student

questions as well as additional analyses that compare the results to standardized question

answering results and argue that mine are comparable, and better for my dataset. Chapter

5 explains why some analyses were omitted and presents additional preliminary analyses

with the goal of predicting how training data obtained in the first semester might be

exploited to improve accuracy in future semesters. Chapter 6 describes why the data are

an important contribution, including a discussion of why this type of data is difficult to

collect and a description of the dataset itself. Chapter 7 explores limitations of the

presented research and opportunities for future work; it also reiterates the contributions of

the dissertation and concludes.

www.manaraa.com

CHAPTER 2

PRIOR WORK

The research described in this dissertation is broadly interdisciplinary, drawing on

ideas from both commercial and academic systems for information retrieval, computer

science education, and intelligent tutoring systems. This chapter will focus on laying the

intellectual foundation necessary to understand how research from those fields has

influenced my work. This chapter examines three threads of prior work, one on

information retrieval and automated question answering, one on learning to program in

Java, and one on intelligent tutoring systems with an emphasis on relevant work on tutorial

dialog.

This section begins with a discussion of the more widely recognized commercial

information retrieval systems, and then it discusses a number of academic systems. Some

of the academic systems are less well known but are important for their contributions in the

areas of information retrieval, computer science education, and intelligent tutoring.

2.1 Information Retrieval

2.1.1 Industrial Solutions

Google has created the world's most successful search engine. The founders

viewed the Internet as a graph, and leveraged the linking structure to design an algorithm to

www.manaraa.com

15
rank the relative value of the information in the graph [19]. This is one of the most

recognized examples of using information beyond the text in a document to improve

classification. Unfortunately, even Google requires keywords, words that users must

supply to unlock the information of the internet. For savvy users, providing keywords is

generally not problematic, but for novices and students who are just acquiring a technical

vocabulary, even a search engine as good as Google can be a challenge to use.

Before the Internet was widely used, Microsoft created extensive context-sensitive

help for people using their products. Their help system includes avatars to answer

questions and perform keyword searches as well as automated infrastructure that

recognizes common tasks. For example, when the user begins a common task such as

writing a letter, an automated avatar offers to assist [12]. Microsoft's commitment to

improving software usability is admirable, but it is limited in scope to their proprietary

products.

How May I Help You is a commercially successful, partially automated system for

routing telephone calls and resolving help requests [33]. A semi-autonomous model is well-

suited for a question answering system in which the majority of the questions fall into a few

major categories. In such a system, answers to the majority of questions can easily be

selected automatically, and the small number of questions for which an automated response

is not practical can be handled by humans. This dissertation proposes that a semi-

autonomous model would also be good for answering student questions.

www.manaraa.com

16
2.1.2 Question Answering- The TREC Track

Many more information retrieval systems have been the subject of academic

research. Work in the information retrieval community has generally focused on the query

or perhaps a question as the articulation of a user's information needs. A typical web query

is between two and three words in length (e.g.,[14]). Although a typical factoid question is

longer than two or three words, it is also quite short compared to other sources of language

(e.g. documents, papers, etc.) used in natural language processing. The shortness of these

articulations of a user's information needs can be problematic for statistical methods that

rely on reasonably large numbers to compensate for noisy data.

A major meeting for the information retrieval community is the Text REtrieval

Conference (TREC). The TREC competition solicits entries from various commercial and

academic entities for a variety of information retrieval tasks. Of particular interest is the

Question Answering Track, which ran between 1999 and 2007. A typical system entered

in the corresponding contest might consist of several major software modules organized

into a pipeline. One module might process the question, perhaps matching it against a

template or reducing it to keywords in order to build a query. The next module would use

the query as input and retrieve a batch of relevant documents. The third module would

extract answers from the documents, and the fourth module would rank the resulting

answers. Each annual contest usually attracted between 10 and 30 submissions from

various academic and industrial groups working on the question answering problem.

A typical Question Answering Track task consisted of several hundred questions

with the vast majority being factoid questions, such as "What is the capital of Texas?" The

www.manaraa.com

17
remaining questions might be variants of the original question, request a list of data, not

have an answer in the supplied corpus (indicated by Nil in Table 2.1), or involve some

other minor variation of research interest. To keep the contest competitive, the question

text as well as the text that was mined for answers came from increasingly difficult corpora

each year, including blogs in one of the final years of the contest. Later versions of the

TREC competition utilized more difficult datasets and more difficult tasks. Consequently,

the scores in later years of the competition were often lower (e.g., [27]), and comparing

TREC results across years is like comparing apples and oranges. Table 2.1 lists some of

the major features of the TREC competition each year between 1999 and 2007.

Typically, the TREC competition requires each group to compute a variety of

statistics describing their system for a given test set of data. One of these statistics is the F-

score, a weighted average between precision (how many of the retrieved documents are

relevant) and recall (how many of the relevant documents are retrieved). Another statistic

is accuracy, the fraction of questions for which the system can return a correct answer.

Sometimes the systems are evaluated using a measure called Reciprocal Answer Rank,

Table 2.1. TREC competition features

1999
2000
2001
2002
2003
2004
2005
2006
2007

Factoid questions (200),long+short answers
User questions (500+ 193 variants)
Nil answer, List task, context task
Answers instead of snippets, confidence score
Factoid, definition, lists, F-score
Series of questions
Series of Q's, document ranking, relationship
Series of Q's, ciQA
Series of Q's, ciQA, blogs

www.manaraa.com

18
which allows a system to list several possible answers and receive more credit for listing

the correct answer earlier in the list. Based on the answers that a system provides,

additional scores are computed to rank the various question answering systems.

Within the question answering task, the easiest part is answering the "factoid"

questions, and the best systems report answering just over half of these correctly

(MRR=0.58). The other systems report accuracy substantially lower (MRR <0.5), and

overall accuracy of all question types is also substantially lower [81]. . These results

suggest that providing automated answers to questions is a difficult task for computers,

even when the question is well-articulated by an expert and the corpus contains cohesive,

coherent text with an appropriate answer.

Of all the TREC contests in the question answering track, the contest in TREC 9

(2000) is particularly related to my research. In that contest, the "question(s) were taken

from a log of questions submitted to the Encarta system made available by Microsoft plus

questions derived from an Excite query log" as well as "questions that were created by the

assessors to be semantically identical but syntactically different from a question already in

the test set" [81]. An examination of the test set suggests that 193 of the 693 questions (or

more than 25%) fall into this category of questions that are semantically identical but

syntactically different from a previous question in the test set.

Of the papers in the corresponding SIGIR conference (2003), one specifically

mentions exploiting a technique called "answer caching" to provide answers to some of

these questions. Answer caching is a technique that matches an incoming question to a

semantically similar previous question or question category in order to recycle an answer

www.manaraa.com

19
[58]. In the TREC contest referenced in the SIGIR paper, the questions were

syntactically different, but lexically very similar. The SIGIR paper reports that the

technique accounts for a modest 1-3% improvement which seems small considering that

this technique alone could theoretically answer approximately a quarter of the questions.

One weakness in the approach outlined in that paper is the measurement of similarity

which relied on fairly strict lexical similarities, and the approach did not utilize term

weightings in calculating similarity.

Unfortunately, the TREC competition does not have a track for computing the

answer to student questions. Student questions are more challenging than typical factoid

questions for several reasons. First, student questions are often incomplete and poorly

articulated. For example, a student might simply say "I'm stuck." Second, students often

use colloquial language when requesting help. For example, they frequently use polite

words such as please and thank you as well as slang words in their requests; typos, spelling

errors, and grammar errors also indicate the colloquial nature of their typed text. Third,

students frequently ask free form questions that are difficult to classify with a traditional

grammar or information extraction frame. Fourth, student questions are often deeply

rooted in a complex educational context that includes implied information about the course,

text, instructor, assignments and various other details.

2.1.3 Passage Retrieval

One of the major limitations of the research on answering factoid questions is a

focus on finding an answer, usually a few words or perhaps a sentence long. However,

www.manaraa.com

20
many users generate queries suggesting a need for longer answers. One alternative to

satisfy these users is called passage retrieval. One approach to passage retrieval involves

evaluating the similarity of the document to the query, and then finding the most relevant

passages in sufficiently similar documents [69]. The ideal length of a passage appears to

depend on the corpus from which it is extracted; however, 200-250 words seems to be a

reasonable passage length for most topics [25]. These papers found that retrieval was more

effective when documents were selected first, and then passages were selected from

relevant documents. Another approach found relevant passages and then used the passages

to identify relevant documents, and argued that for at least some corpora that approach was

more effective [47].

2.1.4 Frequently Asked Question (FAQ) Question Answering Systems

A weakness of traditional statistical retrieval is the inability to leverage structural

information. FAQ finding attempts to leverage the structural information inherent in a

corpus of FAQ documents consisting of questions and answers. An early system achieved

shallow language understanding with keyword matching and multiple lexicons[70].

Another system , the FAQ finder system, utilized of shallow parsing and marker passing

[38]. To improve upon previous work, one group combined the statistical information in

the vectors with semantic information gleaned from WordNet [72]. More recent work has

attempted to summarize FAQ's based on a user query [15]. Query logs have also been

used to cluster similar questions and smooth models of question types, thus reducing the

need to engineer knowledge [48].

www.manaraa.com

21
2.2 Classifying Questions from Novice Programmers

Several classification schemes exist for classifying student questions and source

code in introductory computer science, but many of these are too broad to be useful for

classifying questions and giving automated answers. Garner, Haden, and Robins suggest a

number of broad topical categories (e.g., loops or arrays) and present an analysis showing

that the number of questions per topic varies week by week, with the majority of questions

often clustered around one or two topics each week. They note that they were "not aware of

any predefined criteria for validating any particular taxonomy of problem descriptions" so

they provide a fairly detailed list of 27 categories that they used in the appendix of their

paper [32, 64]. Kim, Shaw, Chen, and Herbert have demonstrated that approximately

80% of the speech acts on a class discussion board for an operating systems class are

questions or answers, and the vast majority of those questions are about assignments and

exams for the class; they suggest that the chapters of a textbook could be the foundation for

an ontology for a computer science course [49]. Baffes and Mooney suggest two broad

categories of students' problems: incomplete student work and incorrect student work [10].

Spohrer, Soloway, and Pope list four major categories of novice programming errors

including missing code, malformed code, spurious code, and misplaced code [74].

Unfortunately, all of these various classification schemes are too course grained to

be useful for answering student questions. Most novice programming students recognize

when they ask a question that they are missing code and/or they have malformed code, and

many students recognize that they need help with a particular topic. Thus, correctly

assigning a question to such a category does not increase a student's knowledge, nor does it

www.manaraa.com

22
close the gap in knowledge that triggered the question. One conspicuously absent

classification scheme separates questions into categories based on whether or not the

accompanying code compiles. Extensive prior work has examined both of these categories

independently, and the remainder of this section gives substantial technical detail on prior

work classifying Java compiler errors as well as a briefer overview of systems that aim to

help novice Java programmers when their program does compile, e.g., with system design

and run-time errors.

2.2.1 Classifying Compiler Errors

Several recent projects have analyzed compiler errors made by students learning to

program in Java. Typically, these papers involve a quantitative analysis of hundreds or

thousands of compiler errors made by novice Java programmers during a study period as

short as a month or two or as long as a semester.

2.2.1.1 Gauntlet

The Gauntlet project was launched by instructors at West Point. An early version of

the Gauntlet system ran as a web application, and a later version was integrated with the

local IDE. Both versions logged all the compiler errors for a version of student source code,

and both provided additional feedback to help students fix their problems. Because every

freshman at West Point is required to take an introductory programming class, the project

was able to collect substantial amounts of data. The system collected a total of 559,419

errors in just one semester. The dataset is somewhat unusual because the majority of the

www.manaraa.com

23
students were not planning to major in Computer Science. Collectively, the 10 most

common compiler errors account for 51.8% of the errors collected [30, 41]; they are listed

below:

• Cannot resolve symbol
• ; expected
• Illegal start of expression
• Class or interface expected
• <identifier> expected
•) expected
• Incompatible types
• Int
• Not a statements
• } expected

2.2.1.2 Blue J

Matthew Jadud studied novice compilation behavior in the context of BlueJ, a Java

interactive development environment (IDE) for novice programmers. BlueJ only displays

and logs the first error that the compiler finds. In an introductory programming class of

206 students, 63 agreed to participate in the study of logged compiler errors during the

weekly lab sections. A total of 1926 errors was logged belonging to 42 different types. Of

these errors, more than half belonged to the five most common errors including missing

semicolons (18%), unknown symbol variable (12%), bracket expected (12%), illegal start

of expression (9%), and unknown symbol: class (7%). The next five most common error

categories include unknown method (7%), incompatible types (4%), class-or-interface-

expected (4%), identifier expected (4%), class expected (3%). Collectively, these ten error

types represent approximately 80% of the errors in this set [42,43].

www.manaraa.com

2.2.1.3 GILD
24

Suzanne Thompson studied compilation errors from CS2 students using Eclipse

and Java with the GILD plugin. Out of 115 students in the class, 10 agreed to participate in

the study, and a total of 3535 error messages belonging to 88 compiler message types were

identified. Of these errors, more than half belonged to the top five error categories. The top

10 categories are listed below:

• UndefmedName (20.2%)

• TypeMismatch (8.8%)
• UndefinedMethod (8.5%)
• ParsingErrorlnsertToComplete (8.4%)
• ShouldReturnValue (4.9%)
• UndefmedType (4.8%)
• ParsingErrorDeleteToken (4.1 %)
• PakagelsNotExpectedPackage (3.2%)
• UndefmedConstructor (2.9%)

• ParameterMismatch (2.6%)

Collectively, these 10 errors represent approximately two thirds of the errors in this set

[76].

2.2.1.4 Jikes

Similar research carried out by some researchers using JCreator and Jikes (an open

source compiler project that appears to produce error messages that are a little bit different

from the javac compiler) included all of the assignments over the course of a module

delivered to 192 students. In total 108,652 errors were collected. The authors report 226

distinct semantic messages with 6 errors (conditional, loop, method, array, class, string)

constituting more than 50% of the errors in each concept [2].

www.manaraa.com

25
2.2.1.5 Summary

In summary, several different groups have independently studied novice compiler

errors and concluded that majority of the bugs come from a few major categories.

However, as even the authors acknowledge, it may be somewhat misleading to suggest that

a single error message category has a single cause or that the cause of the error message is

adequately conveyed by the error message. For example, a Gauntlet paper notes:

"[The] same message (cannot find symbol) appears whenever one of the following three

errors occur:

• The variable is declared properly, but is never initialized, and then is used.
• The variable is misspelled when it is used.
• The variable is declared, but its initialization occurs inside of a conditional block and is
used outside of that conditional block" [30].

Additionally, a BlueJ paper spends approximately one fourth of the paper

describing how one student spent approximately one fourth of an hour unsuccessfully

attempting to resolve a missing semicolon error [43].

2.2.2 Run Time Errors

2.2.2.1 Propel

Other prior work has examined novice programming errors that occur when code

compiles, for example those errors that occur before any code is written or alternatively

when a program compiles and runs. ProPL is a natural language tutorial dialogue to help

students design and plan their program [53]. ProPL demonstrated that natural language

technology is effective in helping students learn how to compose Java programs, but did

www.manaraa.com

26
not attempt to answer student questions, and it was limited in scope to one or two

programming problems.

2.2.2.2 FaultFinder

At the other end of the programming pipeline, the FaultFinder system utilized a

combination of scripts and machine learning techniques to perform static analysis on

simple programs and identify run-time errors. The system was able to use a combination of

machine learning, program slicing, and program comparison to automatically identify

many errors that novices made. Unfortunately, the FaultFinder system depends on

compiled student code, and it only identifies bugs [45].

2.2.2.3 FindBugs

Another system, FindBugs focused on more advanced programming issues such as

threading and null pointer dereferencing. The FindBugs system contained a set of patterns

that represented programming language idioms that were frequently associated with bugs.

The system was able to automatically identify many bugs, but most of the bugs that it

identified were beyond the scope of a novice programming class [40].

2.2.2.4 Summary

Like many of the preceding projects, the ultimate goal of this research is to provide

quality automated help to novice programmers. Unfortunately, this dissertation will not

actually bridge the gap of providing quality automated answers, but it does extend the prior

www.manaraa.com

27
work on question classification by providing a deeper analysis of the source of the bug

instead of looking only at compiler or program output.

2.3 Tutorial Dialog

This section considers two general periods of progress in the general area of

intelligent tutoring with extra emphasis on contributions related to tutorial dialog. The first

period highlights historical contributions of early intelligent tutoring systems beginning

with Jaime Carbonell's SCHOLAR and continuing through the seventies and eighties. The

second period considers work done between roughly 1990 and the present, with an

emphasis on work done more recently.

2.3.1 Early Intelligent Tutoring Work

Intelligent tutoring first became an independent research area in the 1970s and

1980s. Early systems from that time period were extremely limited by memory,

constraints, a lack of networking technology, and limited user interface choices (frequently

text-only). Consequently, many of the contributions of these early systems are more

theoretical in nature. They are worthy of review because many of the basic techniques

introduced by these systems are still in use today, and the theoretical justification for this

general area of research remains valid and popular in modern research.

www.manaraa.com

28

2.3.1.1 SCHOLAR

Summaries of early progress in intelligent tutorial dialog typically begin with a

discussion of Jaime Carbonell's dissertation on SCHOLAR [53, 83] . SCHOLAR was a

mixed-initiative tutorial dialogue system in which a student could pose questions to the

system or the system could ask questions of the student [26]. The dialogue was based upon

a semantic network, and the system could generate questions and evaluate answers by

traversing the network. Wenger provides an overview of the system and provides some

commentary; his writings include example dialog for SCHOLAR that occurs in the general

domain of geography [83]. From a modern perspective, one of the major shortcomings of

SCHOLAR is that it was not used by students.

2.3.1.2 WHY

Another noteworthy early system called WHY conducted tutorial dialog in the

domain of rainfall process. The WHY system incorporated a Socratic strategy for

advancing the dialogue [75], and it inspired future work by other researchers on a system

called WHY-2 [36]. The scripts of the WHY system were inadequate to pursue global

goals such as pervasive misconceptions or extended explanations of complex concepts.

2.3.1.3 SOPHIE

The SOPHIE projects (I-III) examined tutorial dialogue in conjunction with a

tutoring system for designing electrical circuits [21]. The designers outlined the following

four criteria for evaluating instructional interfaces [24]:

www.manaraa.com

29
• Efficiency (the student should not have to wait)
• Habitability (the system should accommodate various phrasings)
• Robustness with ambiguities (the system should not expect independent systems to

be unambiguous)
• Self-tutoring (the system should gracefully handle unacceptable inputs while

teaching the student how to properly interact with itself)

The SOPHIE projects were also the first to consider tutorial dialog as a component of a

larger intelligent tutoring process with other components, and they were the first to utilize

information external to the dialog (e.g., from a game) in making dialog decisions. Again,

many of the limitations of the system can be linked to representation. Specifically, some of

the conceptual knowledge was difficult to represent with existing data structures and the

system frequently fumbled when more than one error occurred in the circuit.

2.3.1.4 BUGGY

BUGGY, DEBUGGY, and IDEBUGGY are systems that helped students learn

subtraction by exploiting a model of observable bugs. From a computational standpoint,

they represent a major shift in tutoring systems towards representing learning and tutorial

actions in a procedural network. BUGGY utilized an extensive procedural network to

model subtraction with subprocedures [20]. DEBUGGY used the model introduced by

BUGGY to diagnose student problems, and IDEBUGGY diagnosed student problems

interactively [23]. Presumably data from these systems contributed to the REPAIR [22]

and STEP [78] theories that introduce a generative model of bugs in terms of an underlying

cognitive model. Representing tutoring and learning in a procedural network was an

important advancement that eventually led to model tracing tutors and step tutoring.

www.manaraa.com

30

2.3.1.5 MENO AND PROUST

Programming was also a popular domain for intelligent tutoring during this time

period. At the University of Massachusetts Amherst, the MENO project was an attempt to

build an intelligent tutoring system for Pascal. MENO compared student program parse

trees to template program parse trees. Differences in the parse trees were mapped to

misconceptions in a database, allowing MENO to automatically retrieve misconceptions if

the parse tree appeared to be incorrect [83]. Unfortunately, the complexity and variability

of the student programs exceeded the expectations of the system. MENO-II reduced the

size of the problem space by specializing in analyzing loops and variables [71], and

MENO-TUTOR focused on remedial dialogue [89]. PROUST was another spin-off project

that viewed program design as a hierarchical process consisting of agendas, goals, and

code. PROUST ran on syntactically correct code and for one programming problem, it

could comprehend 81% of questions, and detect 78% of the 795 total bugs. However, on a

more complex problem, the system could only detect 64% of the bugs, and in both cases, a

fair number of false alarms were generated [46].

2.3.1.6 LISP Tutor and ACT

Meanwhile, at Carnegie Mellon University, a model tracing tutor called the LISP

tutor help students learn the Lisp programming language while also serving as a test bed for

John Anderson's ACT theory. John Anderson's involvement helped to ensure that early

versions of the LISP tutor had a solid cognitive science foundation with each tutorial and

learning action linked to specific fundamental behaviors in human learning [7, 8]. Many of

www.manaraa.com

31
the lessons learned from the process of creating the LISP tutor eventually affected the

creation of the cognitive tutors, a set of intelligent tutoring systems heavily influenced by

cognitive science. Early versions of the cognitive tutors also linked learning and tutoring

actions to behaviors of the human brain, but more recent versions have focused on learning

gains, instructional science, and human-computer interaction and the focus has shifted

away from cognitive science.

2.3.1.7 PEA

At Edinburgh, an independent project called the PEA (Program Enhancement

Advisor) provided intelligent tutoring on Lisp programming style. The PEA project is

relevant to this research because it focused specifically on programming style, an area that

seems to be the topic of many novice programming questions [57]. Programming style is

an interesting area for intelligent tutoring research because the domain consists of both

objective elements and subjective elements, and subjective elements present potential

problems for adoption by instructors with different philosophies than the tutoring system

designers. The PEA project appears to not have progressed to the point where this became

a problem. Probably the primary reason that the various Lisp tutors described in this

section are not used today is that the Lisp programming language lost its luster.

2.3.1.8 Summary

Early intelligent tutoring research can be characterized as largely consisting of

proof-of-concept systems that primarily demonstrated the capability of the computer in that

www.manaraa.com

32
time period. Although some of the systems were used by humans (e.g., SOPHIE was

used for a semester), they were rarely used for actual instruction. In 1984, Benjamin

Bloom published a paper arguing that a two sigma difference separated one-to-one (human)

tutoring and classroom instruction [16]. He further stated that one-to-one human tutoring

was expensive and claimed that the challenge was to make it cost-effective. Believing that

challenge was one that computers could solve and recognizing a need for more empirical

studies, the intelligent tutoring research community began a new, more empirical era of

research.

2.3.2 Intelligent Tutoring Modern Work

Modern intelligent tutoring research has seen the rise of several different tutoring

systems that are currently deployed in classroom settings, and many of these systems have

made at least partial progress on the two sigma challenge. The Cognitive Tutor Algebra

Tutor has achieved a one sigma improvement over traditional classroom instruction in the

domain of Algebra [51]. The Andes Tutor has achieved similar gains in the Physics

domain, and they argue that they are the gold standard for modern intelligent tutoring

systems [80]. Those gains are based on customized assessments. Using standardized

assessments, the systems report smaller gains of 0.3 (Algebra) and 0.25 (Andes) [80]. The

The Project LISTEN group has achieved similar statistically significant effect sizes for

their reading tutor that listens to children read aloud [55]. These systems have generally

bypassed the problem of poorly articulated student language by focusing on "step tutoring"

as opposed to "natural [language] tutoring" [77]. The general approach to step tutoring

www.manaraa.com

33
consists of constraining the size of the information space that the system covers (e.g. a

single algebra problem [51], a single physics problem [80], or a sentence to be read aloud

[55]), dividing each problem into a set of skills or steps (usually modeled in a procedural

network), and creating interventions or help messages for each skill, ending with a "bottom

out hint" or answer for each step.

In modern intelligent tutoring research, two reasons are commonly cited for

pursuing natural language tutoring. One popular reason is that natural language may help

students to learn deeply and avoid shallow learning [36]. Others have suggested that

natural language tutoring might close the gap between existing tutoring systems that report

a one sigma improvement over classroom instruction and expert human tutors that are

capable of a two sigma improvement [60]. Tutorial dialog has played both a peripheral

role, as a plug-in to an existing tutoring system, and a central role, as the major focus of the

tutoring system.

2.3.2.1 Geometry Explanation Tutor

Some systems have focused specifically on helping students to articulate their

reasoning, as a plug-in module. For example, the Geometry Explanation Tutor is a plug-in

to the Geometry Tutor that provides feedback on natural language justifications for steps in

a geometry proof [5]. The Geometry Explanation Tutor was able to respond to and process

student language well enough to provide some tutorial interventions^], but it did not

produce learning gains [4].

www.manaraa.com

34

2.3.2.2 CycleTalk

Another example of a plug-in module is CycleTalk, a system that facilitated Wizard

of Oz studies in the context of the CyclePad system that tutored students in the domain of

thermodynamics [67]. The Wizard-of-Oz studies that the CycleTalk system facilitated

allowed experimenters to conduct tutorial dialog with students. The collected dialogs

reveal common characteristics of student dialog such as abbreviations, misspellings, and

colloquial language. However, the presence of a human Wizard meant that the system

never really had to classify student language or utterances or provide solutions to other

technical challenges in dealing with student dialog.

2.3.2.3 Atlas

Atlas is a generic dialog plug-in for model tracing tutors. Model tracing tutors are

intelligent tutoring systems that trace a graph of student skills, with edges representing the

students' input and nodes representing the student's knowledge state. Atlas has two major

components that can be extended with domain-specific knowledge [66]. The first

component, the Atlas Planning Environment (APE) takes care of dialog management issues

and plans tutorial strategies while monitoring the student's progress with model tracing

techniques. The second component CARMEL takes care of the natural language

understanding with a system that prefers well-formed, well-spelled dialog, but allows

relaxations to accommodate the more colloquial language that students tend to use. A

separate tool facilitates authoring Knowledge Construction Dialogues (KCD's), the domain

specific pieces of knowledge that Atlas uses in constructing its dialogs. The Atlas system

www.manaraa.com

35
was originally implemented as a plug-in for the Andes Physics tutoring system, and the

system designers were able to show a 0.9 sigma improvement in learning gains over Andes

without natural language tutoring [36]. Atlas later produced a couple of spin-off projects.

One spin-off, WHY2, demonstrated the domain-independence of the system by deploying

another plug-in in a different tutoring system (AutoTutor) in a different domain (computer

literacy), and it explored opportunities to leverage the best aspects of both statistical

language processing and symbolic language processing.

2.3.2.4 AutoTutor

The AutoTutor project, in contrast, considers dialogue to be an essential part of the

tutoring process, and it has achieved a one half sigma improvement for their system that

teaches computer literacy [36]. Generally, the AutoTutor project relies on statistical

language processing techniques, treating student dialog as a bag of words and throwing

away the syntactic information contained in the dialog. The AutoTutor project has

researched a number of different analytical approaches for processing student language in

response to tutorial prompts and published relevant papers. The first publication simply

demonstrated that an information retrieval technique called Latent Semantic Analysis

(LSA) [52] with natural language was a viable approach to selecting text for intelligent

tutoring dialog with human raters as the gold standard [86]. Later, the same research group

tuned the parameters for LSA and found slightly stronger performance by altering features

such as the number of dimensions in the matrix and the amount of training data [87]. In

another variation, the research group compared increasingly simple models, including

www.manaraa.com

36
cosine similarity and concluding with a keyword model. The keyword model counts the

number of words found in both a current question c and previous question p and divides by

the maximum number of terms in either question. The much simpler keyword model is

within 20% of the performance of the full LSA model for their dataset [85]. This line of

research is also described in greater depth in a journal article [37].

2.3.2.5 PedaBot

The PedaBot project led to a similar line of research with a few fundamental

differences. First, the PedaBot project aims to match student discussions to similar

previous student discussion [50]. Because students are notoriously bad at articulating their

discussion points, matching student input to student input is a more difficult problem than

matching student input to expert-provided input. Second, although the PedaBot approach

does not require expert-provided answers, it does require a list of expert-provided technical

terms. The PedaBot project avoids generating these manually by automatically extracting

them from a textbook or other authoritative, expert provided resource [50]. Like the

AutoTutor group, the PedaBot group has examined various techniques for calculating

similarity of the various discussions in the system, with the focus on LSA and cosine

similarity [50]. Together, these groups have demonstrated convincingly that LSA and

cosine similarity are a promising direction for processing tutorial dialogue.

The general approach still has a number of serious weaknesses. First, the research

results are not as compelling as they could be. The AutoTutor group reports correlations

with r < 0.5 [85], and the PedaBot group reports finding discussions of "moderate

www.manaraa.com

37
relevance" or discussions that rank 3 on a 4 point Likert scale [50]. Second, the

approaches outlined require significant expert-authored resources, either in the form of a

list of ideal answers in the case of AutoTutor or in the form of a list of technical terms for

PedaBot, and matching these technical terms is critical to both approaches. However,

students (especially novice programming students), often do not use technical vocabulary

in articulating questions. Third, the approaches seem to rely on students being quite

verbose in their interactions with the system. Literature in the information retrieval

community has shown that longer queries are often more effective and robust [14], and

LSA is known to be most effective with between 300 and 500 terms in the final matrix

(after the size is reduced by the principle component analysis) [18, 85]. However, students

(especially novice programming students) are not verbose when asking questions.

www.manaraa.com

CHAPTER 3

DATA

3.1 Historical Background

When the original research project was designed, Joe Zachary taught Computer

Science 1 at the University of Utah. In his course, he utilized a Java applet that he had

written called the TA Call Queue where students entered their name and the location of

their lab machine. This information then appeared in the TA interface, and a human TA

was required to walk over to the student's machine in order to help them. The TA Call

Queue did not allow students to type natural language describing their help request, help

students obtain remote assistance, or log data to the server. To facilitate collecting data

for my research and provide functionality not available with the TA Call Queue, I

designed a new piece of software called the Virtual Teaching Assistant (VTA) system

that logged student questions and allowed for remote feedback. With both systems, the

human TAs periodically circulated through the lab and prompted the students to ask

questions because some students are reluctant to ask questions without prompting.

3.2 System Architecture Overview

The VTA system consists of four major software components plus a database. All

four software components are implemented in Java. Two of the software components are

www.manaraa.com

39
client interfaces, one for students and another for TAs. Another major component

performs various analytical procedures on the data as described in detail in the next

chapter. The final major component is a set of Java servlets that run on a web server as

middleware, processing data from the clients and storing it in a database.

The Virtual Teaching Assistant student software works as follows. The student

decides to ask a question and launches the Virtual TA software by clicking on a button on

the class webpage. The application already knows the student login, location, and current

assignment number. However, the student can override that information. For example,

students may choose indicate that they are using a personal laptop in the college

computer lab or use their first name instead of their login name. The student can fill in

the name of the Java method and class that they believe is relevant to their question, and

any natural language they need to express their question. Additionally, the student must

attach their source code folder using a standard open file dialog prior to submitting their

question. When the student clicks the send button, the client connects to a server, logs

the information it has collected from the student to a database, and passes the question to

a human TA on duty via the TA client interface. Figure 3.1 shows the student interface.

The human TA sees the question, source code, and other educational context in a

TA interface. In the TA interface, the upper left hand area displays the list of students

who have questions on the queue; the lower left hand area lists the source code files

associated with the selected student. The center area displays the student source code.

The third panel to the right displays the student form and provides an area for the TA to

type a response and/or an answer category. An answer category corresponds to a group

www.manaraa.com

40
r"--- - • - " - • • • • ' - • • • • • - - - - - - • - — - v

4» VTA-Student Interface - • £ y

CADE login

Location

Assignment

Java Class

Java Method

Browse

cecily

lab1-7

assignment4

StringPractice

fileExtension

1 e. C E CI LY\My D o c u m e nts\ATe stS u iteW/TAB I u e J

How do 1 extract the extension of the filename?

Send

Remove me from the queue; 1 answered my own question.

Show me my history of questions and answers.

Figure 3.1. Student Interface

www.manaraa.com

41
of questions that could be answered with the same answer. To facilitate the

assignment of questions to answer categories, the TA interface has a button panel in the

right-most pane with one button for each answer category for the current assignment; the

TA can also add a new answer category if the current question does not fit into an

existing category. Initially, the button panel for an assignment was empty, since no prior

research existed to suggest what kinds of questions students might ask. However, as the

students asked questions about an assignment, the number of labeled buttons for that

assignment grew. The human TA can answer the question in person by walking to the

student's machine in the computer lab, or the human TA can type a text response to the

student that will appear in the student's client software in the lower text area. To remove

the question from the queue, the TA must assign the question to an answer category. The

answer category chosen by the human TA is logged to a database along with any text that

the human TA has provided for the student. The TA interface is shown in Figure 3.2.

A set of middleware Java servlets connects the Student Interface and the TA

Interface. These servlets transport data between the two interfaces, and they log data to

the database. Currently, they are separate from the analysis software described in the

next chapter, but they are designed to facilitate easy integration in the future when it will

be possible to answer some questions automatically with the VTA system. The database

stores the questions, the answers, and their educational context. Educational context

includes information such the student's name/login, location, course, directory containing

the student's source code, time the question was asked, time the question was answered,

responding TA, and any other details relating to the question and the answer.

www.manaraa.com

42

Figure 3.2. TA Interface

www.manaraa.com

&
>V

TA
-T

A
In

te
rf

ac
e

Ta
sk

s

M
on

_M
aM

6_
17

_1
9_

59
JI

D
T_

20
Q

9_
ce

ci
ly

M
on

 M
ar

16

 1
7

34
 2

4
M

DT
 2

00
9

Jo
hn

1 pu
bl

ic
cl

as
s

Te
st

(//
in

st
an

ce
 v

ar
ia

bl
es

 -
re

pl
ac

e
th

e
ex

am
pl

e
be

lo
w

 w
ith

 y
ou

r
pr

iva
te

 in
tx

;

•C
on

st
ru

ct
or

 fo
r o

bj
ec

ts
 o

f c
la

ss
 T

es
t

*/ pu
bl

ic
Te

st
O

{
//i

ni
tia

lis
e

in
st

an
ce

 v
ar

ia
bl

es

ix
=

0:

*A
n

ex
am

pl
e

of
 a

 m
et

ho
d-

 re
pl

ac
e

th
is

 c
om

m
en

t w
ith

 y
oi

* *@

pa
ra

m
 y

a

sa
m

pl
e

pa
ra

m
et

er
 fo

r a
 m

et
ho

d
*

©
re

tu
rn

th

e
su

m
 o

fx
 a

nd
 y

*/ pu

bl
ic

in
ts

am
pl

eM
et

ho
d(

in
ty

)
(

//p
ut

 y
ou

r c
od

e
he

re

re
tu

rn
 x

 +
 y

;

La
un

ch

;Qi
@

CA
DE

 lo
gi

n

Lo
ca

tio
n

As
si

gn
m

en
t

St
rin

gP
ra

ct
ice

fiS

sE
xte

ns
ion

Ho

w
 d

o
I e

xtr
ac

t t
he

 e
xt

en
si

on
 o

f th
e

fil
en

am
e?

ce
ci

ly

la
b1

-7

as
si

gn
m

en
t4

M
ov

in
g

th
e

Py
ra

m
id

Si
zi

ng
 p

yr
am

id
s

Se
pa

ra
tin

g
th

e
py

ra
m

id
s

du
pl

ic
at

e

Fo
nt

fo
nt

 o
bj

ec
t u

se

ha
nd

in

Im
po

rts

Se
nd

!

An
sw

er
 C

at
eg

or
y:

Sp
ec

ifi
c

Hi
nt

-o
nl

y f
or

 th
is

 s
tu

de
nt

In
st

al
lin

g
Bl

ue
j

M
is

si
ng

 J
av

a
Fi

le
s

Ce
nt

er
in

g
in

 a
 w

in
do

w

Ch
es

s
co

or
di

na
te

 s
ys

te
m

Dr
aw

 C
he

ss
 P

ie
ce

s

Dr
aw

in
g

th
e

Py
ra

m
id

Ne
w

 li
ne

 e
sc

ca
pe

 s
eq

ue
nc

e

Po
ly

go
n

ve
rs

us
 D

ra
w

Li
ne

www.manaraa.com

44
3.3 Participants

The students who used the Virtual Teaching Assistant system were enrolled in

Introduction to Computer Science 1 (CS1410) at the University of Utah. Approximately

150-160 students enroll in Computer Science 1 each fall, and approximately 80-90

students enroll in Computer Science 1 each spring. Most students in Computer Science 1

at the University of Utah are age 18-22, but there are also a few nontraditional students,

such as students from local high schools or adults who have returned to school later in

life. Computer Science 1 is the first required computer science course for computer

science majors, and it is a gatekeeper course with a strong emphasis on the Java

programming language as well as the traditionally long hours for novice programmers

and the typically high dropout, failure, and withdrawal rates. The majority of students

who take Computer Science 1 hope to major in computer science or a related field, but

they must pass that class along with three others with sufficiently high grades to attain

official status as a computer science major.

While the software was being designed, one of Joe Zachary's PhD students, Peter

Jensen began teaching Computer Science 1. The course evolved substantially during his

early years of teaching it. Peter's changes covered many aspects of the course from

assignments, to the textbook, to the choice of integrated development environment (IDE).

In this evolving educational environment, the data collection portion of the VTA software

system was deployed three times. The first deployment occurred in Fall Semester of

2007 while the students were working on the ninth assignment. During this deployment,

a small dataset of 71 questions was collected, but the data in that dataset was excluded

www.manaraa.com

45
because the dataset was small, and the system was behaving unreliably. Unfortunately,

resource leakage problems internal to the system (e.g., not closing files and buffers)

caused the system to crash the server once or twice, and the system was taken offline for

code reviews to improve stability. The data from that deployment are generally excluded

unless specifically noted otherwise in the remainder of the dissertation. The second

deployment occurred during Spring 2008 for assignments 3-12, and the majority of the

data described in this dissertation come from that deployment. That deployment was

stable and resulted in a dataset of approximately 300 questions included in the analysis.

The third and final deployment occurred during Fall 2008 for the first four assignments

and resulted in a dataset of approximately 100 questions included in the analysis; most of

the data in that deployment comes from the third and fourth assignment. Assignments

from Fall 2008 are indicated with an extra leading 0 between the assignment and the

number, as in assignment03 and assignment04.

In the middle of the Fall 2008 semester, the instructor curtailed usage of the

system for several reasons. First, he believed that students were not asking as many

questions as they did with the TA Call Queue. Second, he believed that students did not

like using the VTA system, although anecdotal evidence suggests that at least some

students preferred the VTA system, especially because it allowed them to ask questions

remotely. Third, he changed the primary IDE that students used in the course from BlueJ

to Eclipse, and this switch mitigated some of the primary advantages of the VTA system

because it made it much harder for TAs to remotely inspect students' source code.

www.manaraa.com

46
3.4 Data Cleansing

When the data logging software was designed, every effort was made to facilitate

rapid data analysis. For example, the software automatically prompted the TAs to enter

the assignment name and number. Then the software automatically filled in the student

client interfaces with assignment name to increase consistency. Similarly, the student

clients automatically filled in the login and the name of the computer that the students

were using. However, even though the data set was carefully designed, some cleansing

was necessary. For example, some students used several computers away from the lab,

and their logins needed to be recoded for consistency. In a few cases, the only way to

obtain their login was to look in the comments in the source code.

Some students asked the same question twice because of a glitch in the software

that caused a delay between question submission and system acknowledgement; the

duplicate questions were removed from the dataset, but the original questions were left in

the dataset. Most of the dataset deletions can be attributed to duplicate questions. If a

human could not classify the question using the student's natural language or the status of

the source code, then the question was excluded because the student probably relied on

spoken dialog with a TA that the system was unable to capture. The instructors and

developer occasionally tested the system, and questions generated for that purpose were

also removed. Additionally, an occasional question related specifically to a laboratory

assignment and not a weekly programming assignment, and those questions were also

excluded. The weekly laboratory assignments were much shorter than the programming

www.manaraa.com

47
assignments, and the vast majority of questions about the laboratory assignments were

answered through spoken dialog not captured by the VTA system

While students were waiting for the TA, they might figure out the answer to their

own question and remove themselves from the queue. Additionally, several students

appeared to attempt to engage the TA in dialogue using the system for various reasons

including expressions of gratitude (e.g., ""Thanks! That fixed it" or "ok I got it, thanks"),

explaining location (e.g., "That would be great. Lab 4 - 20. Sorry is that 4th floor of the

WEB?" "Sorry Im directionally challenged. On the server side or on the side close to the

wall?"), requests for in person help (e.g., "Please come" or "anyone here?"), and

complaints about the system (e.g., "i keep getting disconnected and it says i am doing it

but i am not. Hopefully you still have me question."). Unless such dialog also included a

new, novel question, it was also excluded from the dataset.

3.5 Interrater Reliability

When is a question similar to a previous question? Similarity is an inherently

continuous concept, with some questions being more similar and others being less

similar. Unfortunately, to evaluate the accuracy of the algorithm, it is necessary to

convert the continuous concept to a binary measurement. The original plan was to

simply use the answer categories as recorded by the human TAs. Unfortunately, tagging

the data appears to be a task that requires training (so that the TAs know what to

aggregate and disaggregate), and it may be a task that is difficult to perform in real time

while answering questions. Furthermore, not all of the answer categories that the TAs

www.manaraa.com

48
chose are particularly descriptive of the student's question. As the prior work section

emphasized, there are many possible classification schemes for compiler errors and

student questions and none is a widely accepted standard. The human TAs participating

in the study expressed concern that they didn't have time to tag data when several

students were waiting for help, so they were told that they could tag questions with a tag

such as "Answered in person" under those circumstances. Approximately a quarter of the

data was tagged "Answered in person" by the human TAs. Finally, the human TAs could

not easily recycle categories from previous assignments, so much of the data are tagged

with redundant categories across assignments, such as "Testing,", "Testing for integer," ,

and "Tests". By the TAs orginal tags, excluding "self-resolution" and "Answered in

person" categories, less than a third of the questions were repetitive in nature. This

seemed unlikely and low, and the "Answered in person" category was problematic.

Consequently, after the data were collected, I coded all of the data. Each question

that could conceivably be answered with the same response was assigned to a category

for that response. Then an undergraduate TA coded approximately a third of the data,

assigning tags from a set devised by me for that assignment. Because the interrater

reliability was high (Cohen's Kappa=0.872), the other two thirds of the data were not

coded by a second TA, but they were included in the dataset.

3.6 Dataset Statistics

This left a dataset of 411 questions from 13 different assignments covering a total

of 143 answer categories or information needs. Of the 411 questions, 268 of the

www.manaraa.com

49
questions (143 subtracted from 411) were repetitive in nature, and had a similar

previous question. That means that 65% of the questions were repetitive.

Excluding stop words, length of student questions ranged from 0 to 93 words,

with a median of 7 words and a mode of 5 words. More than 2% of the questions had no

words after stop words were excluded. More than 90% of the questions had 16 words or

fewer. Of the 30 questions with more than 16 words, 12 contained source code mixed

with natural language and 3 contained test result sets. Figure 3.3 shows the number of

questions asked as a function of the number of unique words in the question.

The vast majority of the questions (75%) were asked on lab machines with the

other 25% being asked on personal machines, from either home or the lab. Unfortunately,

the logging software did not record a distinction. Although the logging software allowed

Figure 3.3. Question Length

www.manaraa.com

50
students to indicate which Java class and method their question was about, less than a

third actually did so, and of that third, many students only indicated a Java class, but not a

Java method. Approximately half of the questions (43%) were submitted with code that

did not compile.

3.7 Questions Per Assignment

With the assignment number as the independent variable and number of questions

asked per assignment as the dependent variable, a bar chart shows which assignments

generated the most questions. The number of questions is further disaggregated into the

number of questions for which the code compiled and the number of questions for which

the code did not compile. The results are shown in Figure 3.4.

One of the most interesting data points in the Spring 2008 data is assignment 5

which has many more questions asked than the other assignments in its neighborhood; it

is also the only assignment for which the majority of the questions involve code that did

not compile. A little background information may explain this spike. Immediately prior

to assignment 5, the human TAs were given a rather stern lecture and told to make sure

that all questions went through the logging system built into the Virtual TA software,

even/especially the questions asked while they were circulating through the lab. If this is

indeed what caused the spike in assignment 5, there are at least two interesting

observations. First, the fact that many of the questions for assignment 5 involved code

that did not compile suggests that students may be reluctant to pro-actively ask for help

www.manaraa.com

51

Questions per Assignment

•o a>
(A

<
(A
C

o
(0
d)
3
O

70
60
50
40
30
20
10
0

I :i=w4i-ff-M4l^ri-l
S> >& J& -<\ J$> -£> • $ N> W <<W c£> <*> A1" <SJ < ^ <*> < ^ <S? ^ ^ xN" £»" «?J -$T

«?* </ #* </ </ </ J? J- J" J- J- J" J-
J6 J> J* J* J* J* J» $ $ $ £ $ $

<$> & & # # # $ #> $? $ #> $

• Compiled

D DidNotCompile

Figure 3.4. Questions Per Assignment

resolving code that is obviously incorrect; perhaps they are embarrassed that their code

does not compile? Second, if the spike can be attributed to prompted questions, then the

data for assignment 5 suggest approximately 14 prompted questions (14 = 40 total

questions for that assignment - 26 questions on average for the preceding and following

assignments) out of 40 total questions or a prompted question rate of approximately 33%.

Anthony et. al.[9] report approximately four unprompted questions for one prompted

question or a prompted question rate of 20% for a tutorial system using chat, audio, and

video. The difference in prompted question rates could be attributed to either the human

doing the prompting or to the different experimental setups. Either way, tutorial

strategies to increase the efficacy of prompting students to ask questions is worthy of

further research, and results in this area are likely to be broadly applicable.

www.manaraa.com

52
Two other observations from Figure 3.4 merit a little discussion. First,

assignments and assignment4 have smaller question counts than assignment03 and

assignment04. The difference can be attributed to enrollment differences in the Spring

(about 80-90 students) versus the Fall (about 150-160 students). Second, many more

questions were asked about assignmentlO than the others. AssignmentlO appears to have

been an exceptionally difficult assignment for the students, but the reason is a mystery.

3.8 Questions Per Student

During Spring 2008, a total of 39 students asked questions using the system

software, and during Fall 2008, a total of 24 students asked questions using the system

software. Figure 3.5 shows the percentage of questions asked per student. One

observation from Figure 3.5 merits further discussion. One student asks significantly

more questions than any of the other students in the Spring 2008 data. In both datasets,

half of the questions can be attributed to five or fewer students. Personal experience and

anecdotal evidence suggest that one student often contributes significantly more

questions or dialogue than others, but many of the research papers on student questions

report only a flat number, such as average number of student questions per hour [9, 34];

reporting flat numbers hides this behavior from the casual reader.

3.9 Questions Per Category

How many questions occur in an answer category? To graph this, the x-axis

represents the categories of answers for the top ten answer categories (categories with

www.manaraa.com

53

Figure 3.5. Percentage of Total Questions Asked by Each Student

www.manaraa.com

54
eight or more questions asked) ordered by the number of questions per category. The

y-axis represents the number of questions asked for a particular category. Two series of

data are presented, the total number of questions, and the number of questions with code

that did not compile. Figure 3.6 shows the resulting graph.

Figures 3.7 and 3.8 shows similar graphs disaggregated by assignment, with a line

for each assignment. The x-axis indicates the rank of the answer category with the most

popular question for an assignment having a rank of 1. The y-axis indicates the number of

questions asked in the category with that rank. Different assignments may assign

different ranks to the same answer category, and the answer category of a particular rank

generally differs across assignments. For example, the category with rank 1 for

assignment3 is not the same category as the category with rank 1 for assignment^

although they are graphed in same position on the x-axis. The vast majority of the

repetitive questions are contained in the top five categories per assignment. This

suggests with very high likelihood that if the correct answer is not contained in the top

five categories, it is not a repetitive question. Also, the number of repetitive questions is

much higher in the data from Fall 2008 when more students were enrolled in the class.

That suggests that this approach probably scales well, and it is probably more appropriate

for larger classes.

www.manaraa.com

55

•n

1 5 0 1
3 40
«> 3 0 -
O 9(1 -

1 NH
a °"

•• " k
\
\

Questions Per Category

\

CO
O) +
C CM

P X I

P
os

it
py

ra
m

i

r -» i
n> c

rr> O si
o i>

^ O

•

= * =
in
a>

C
as

T

e
st

i

X I
<o

st
ar

t
G

et
tin

g

Top

u>
• t i

o

U
si

n

- » - ^
-,

•c
o
I 9

M
is

si
n
g

st
a
te

— • —

^
-*-»
Q. 0)
-t-" i—
<0 3

ge
tS

ho
rt

e

st
ru

ct

10 Categories

^ ^ » ^ ;

X I
C X I

ss
 a

et

ho

3 E

• -

c
o

en
si

ct

io
n

F
ile

 E
xt

E

xt
ra

N
*

—•— DidNotCompile

• Total Questions

c
o

CD (0
X I P

o
O

Figure 3.6. Questions Per Category

Questions Per Category Spring 2008

I
(0

&

, W X ,

9 11 13 15 17 19 21 23 25 27

Category Rank

-assignments

-assignment4

assignment5

-assignments

-assignment7

-assignments

-assignment9

- assignments

- assignment 1

assignments

Figure 3.7. Questions Per Category Spring 2008

www.manaraa.com

56

Questions Per Category Fall 2008

•o

&
w
<
w
c
o

35

30

25

20

2 15
(0
Q>
3

a
10 4-

4 5 6 7

Category Rank

10

-•—assignment02

-•— assignment03

assignment04

Figure 3.8. Questions Per Category Fall 2008

www.manaraa.com

CHAPTER 4

ANALYSIS

The majority of the research described in this dissertation is focused on a

particular research question, "Can domain knowledge and educational context improve

the classification of student questions?" This chapter answers that question in the

affirmative for introductory computer science.

Classification is a classic machine learning problem, and extensive prior work

exists for classifying data. However, much of that research requires that the data be in

vector or matrix form prior to the application of the machine learning algorithm, and

reducing the compiler error messages, source code, and educational context to vector or

matrix form is not a trivial problem. The remainder of this chapter describes and

analyzes a general approach to classifying the questions in my dataset.

I frame question classification for introductory computer science as a process in

which the data from the student questions, including the natural language, is reduced to a

vector space and cosine similarity is applied to find similar questions. This dissertation

analyzes 411 questions from an introductory Java programming course by reducing the

natural language of the questions to a vector space, and then utilizing cosine similarity to

identify similar previous questions. I report classification accuracies between 23% and

www.manaraa.com

58
56%, obtaining substantial improvements by exploiting domain knowledge (compiler

error messages) and educational context (assignment name). The mean reciprocal rank

scores are comparable to and arguably better than most scores reported in a major

information retrieval competition, even though the dataset consists of questions asked by

students that are difficult to classify.

4.1 Building a Matrix from Natural Language

Reducing natural language to a vector space model is a relatively well-studied

problem, and the techniques utilized in this research have been utilized in other similar

systems (e.g., [37, 50]). This research performs the reduction in a four step process.

First, the sentence is tokenized, and punctuation is removed. The resulting bag-of-words

model is especially appropriate for the grammatically incorrect, difficult to parse

language with which students express themselves. Second, any words found in a list of

common stopwords are removed. The stopword list is the same one utilized in a similar

tutorial dialog system [37] and is the stop word list in the original Bell-Core language

processing distribution. Empirical comparisons with other stopword lists available from

the internet suggested that this list was as effective or more effective than others for the

task. I extended the stopword list with the following four words that behave as stopwords

for this task: "im" (students' shortened form of I'm"), "problem," "need," and "help."

Third, the remaining tokens are stemmed with a Porter stemmer [61]. Stemming reduces

words to their morphological roots, generally discarding suffixes. For example, although

"communicate" and "communication" are different words, they share the same stem

www.manaraa.com

59
"communicat." Finally, the algorithm builds a vector that contains each remaining

word stem in the original question and the number of times it occurs in the question.

Table 4.1 shows five questions from students, their vector stems, and their answer

category. As explained in the previous question, the answer category is a label created by

a human TA to describe a question. A matching pair of answer category tags is

considered the gold standard for establishing question similarity. Table 4.2 shows an

abbreviated vector representation of the first three questions. Although the data in this

example happen to have binary values, the value of data could be any whole number.

Table 4.1. Sample Questions, Vector Stems, and Answer Categories

Ql

Q2

Q3

Q4

Q5

Natural Language

How do i return the file extension
only?
my variable for rectSideOne is
suppose to be 1/9, the program is
returning a 0 for this calculation. I
have no idea why.
I need help extracting a file extension
from a filename.
Program is not computing volume
correctly
Im having trouble understanding why
(1/9) equals 0.0 instead of
0.111111

Vector Stems

return file extens

variabl rectsideon
suppos 1/9
program return calcul
idea
need help extract file
extens filename
program comput volum
correctly
im trouble understand
1/9
Equal

Answer
Category
File extension
extraction
Integer division

File extension
extraction
Integer division

Integer division

Table 4.2. Natural Language Representation of Questions

Ql
Q2
Q3

how

1
0
0

return

1
1
0

file

1
0
1

extens

1
0
1

only

1
0
0

variabl

0
1
0

rectSideOne

0
1
0

suppose

0
1
0

program

0
1
0

Calcu
1

0
1
0

www.manaraa.com

60
4.2 Weighting the Vectors

4.2.1 Notation

At this point, a little notation will be useful in describing the data and the analysis.

The data displayed in Table 4.2 suggest a matrix composed of vectors vi m where m is

the total number of questions that have been asked, and Vj is the vector representing

question i. Each vector Vj consists of entries for each of n stems where n is the total

number of unique stems in all of the questions. The value Vy is the number of times that

stem j occurs in question v,.

The next step in the typical analysis using cosine similarity is to weight the

vectors. In this research, the vectors are weighted based on a common formula called

term frequency inverse document frequency (tfidf score [1]) that gives more weight to

rare words and less weight to common words. The tfidf score of a stem j in a question i

is the product of the term (stem) frequency and the inverse document frequency. The

term frequency is the number of times a stem j occurs in a question divided by the

number of stems in the question i. The inverse document frequency is the logarithm of

the total number of questions divided by the number of questions with the term (stem) j .

Equation 4.1 shows the formula for calculating the weights for a stem (wy) in a matrix w

of weighted vectors wi..m using tfidf given an initial set of vectors vi..m where m is the

total number of questions. Table 4.3 shows the weighted version of the data in Table 4.2.

Equation 4.1. tfidf score

r \ r \

wv =
vv In m

1 k > o]
V *= i J

www.manaraa.com

61
Table 4.3. Weighted Natural Language Representation of Questions

Ql
Q2
Q3

How

.21
0
0

return

.13

.11
0

File

.13
0

.34

extens

.13
0

.34

only

.21
0
0

variabl

0
.18
0

rectSideOne

0
.18
0

suppose

0
.18
0

program

0
.18
0

calcul

0
.18
0

4.3 Measure Similarity in an Online Learning Framework

This section describes how cosine similarity is used in an online learning

framework to identify similar questions. The most recent question that a student has

submitted is considered the current question. Every question that occurred earlier in time

than the current question is considered a previous question. Each of the previous

questions is compared to the current question, and a similarity score is calculated as

explained in the next paragraph. The previous question with the highest similarity score

when compared to the current question is considered the most similar. For example, in

Table 4.3, Q2 would only be compared to Ql. However, Q5 would be compared to Ql,

Q2, Q3, and Q4. Of these, Q2 would be the most similar because it has the highest

similarity score.

Several approaches could be utilized to measure the similarity of two vectors.

Manning and Schutze list six different possible solutions for this problem [54]. I focus

on the most commonly used approach in tutorial dialog systems, known as cosine

similarity, as shown in Equation 4.2. Cosine similarity measures the cosine of the angle

between two vectors, c, the current question vector and/?, a previous question vector. The

numerator of the cosine similarity is the dot product of the two weighted vectors. The

denominator of the cosine similarity contains normalizing terms so that the magnitude of

www.manaraa.com

62
both vectors is one. The resulting cosine similarity score is on a scale of 0 to 1. A

cosine similarity score of 0 means that the pair has no common words, and 1 means that

the questions are identical.

Equation 4.2. Cosine Similarity
n

^ WcjWpj

4.4 Similarity Analyses

For each question, the similarity between that question and each previous question

is calculated. The previous question that has the highest similarity score when paired

with the current question is considered the "most similar." If multiple previous questions

have the same highest similarity score, the most recent new question is considered the

"most similar," because based on the principle of temporal locality more recent questions

are more likely to be more similar. Once the "most similar" question has been identified,

the answer category labels (as assigned by the expert human TA and verified by another

TA) for the "most similar" question and the current question are compared. If they

match, the system earns a point for accuracy, and if they do not match, the system does

not earn a point for accuracy.

I report accuracy scores with two different denominators, all questions (411) and

repetitive questions (268). Of these, only the repetitive questions bar could theoretically

www.manaraa.com

63
reach 100%. In both scores, the numerator is the number of correct similar questions

found (96). As shown in Figure 4.1, the trivial baselines include choosing a random

answer, the most frequent answer, and the most recently used answer. Of those, the most

recently used answer is the most effective algorithm, suggesting the importance of

temporal locality in answering student questions. The cosine similarity algorithm can

classify 35% of the repetitive questions or 23% the total questions. For those questions,

an answer to a previous question could theoretically be recycled to answer that question.

Another way of describing this result is that in a course with five human TAs supporting

the professor, one of those TAs could be replaced by the software.

4.4.1 On the Omission of Statistical Significance Tests

At this point, many readers may wonder whether or not the differences in accuracy

reported by the various baselines are statistically significant. Statistical significance tests are

Classification Accuracy

D Total Questions

• Repetitive
Questions

Random Most Most Recent Baseline
Frequent (Cosine

Similarity with
Natural

Language)

Classification Method

u 38

o 1
3 1S

Figure 4.1. Classification Accuracy Baseline

www.manaraa.com

64
meant to show whether differences in two distinct populations can be attributed to a

variable that distinguishes those two populations or just chance. However, all of the data

used in each condition in the experiments reported in my dissertation come from the same

population, so any change in classification accuracy can be attributed to the algorithm.

Because the experiments reuse data in the various conditions, statistical significance tests

would be unlikely to produce accurate values, and in many cases would over-estimate the

significance because existing statistics require that the data used in a test come from two

distinct sets.

4.5 Compiler Output Processing

The classification techniques described so far in this chapter have been used

previously for a variety of tutorial dialog tasks, and they are inherently domain

independent. However, the low accuracy of question classification suggests room for

substantial improvement. One possible way to improve classification is to leverage

some domain specific knowledge, specifically the output of the compiler. Since more

than 40% of the questions were submitted with code that did not compile, the compiler

error messages represent a source of substantial unused data.

Previous work has examined compiler errors from novices learning to program in

Java. Different research groups have reported widely varying numbers for the different

kinds of compiler errors. Table 4.4 reports on the number of kinds of compiler errors

reported by three projects that studied novice Java programmers.

www.manaraa.com

65
Table 4.4. Compiler Error Type Messages

Project
BlueJ [42]
GILD [76]
Jikes [2]

Error Type Messages
42
88
226

Because all three groups worked with similar data, the reports with numbers that

differ by an order of magnitude are somewhat surprising. However, a more careful

investigation shows that these groups are aggregating and disaggregating the kinds of

compiler errors differently. For example, the common novice compiler errors of type

"cannot find symbol" are aggregated together to form a single error type message in the

BlueJ project. However, in the GILD and Jikes projects, "cannot find symbol" errors are

disaggregated into four or more types including "cannot find symbol-constructor,"

"cannot find symbol-class," "cannot find symbol-variable," and "cannot find symbol-

method." Similar aggregations and disaggregations for other compiler error messages

probably explain the widely varying number of error type messages, although the limited

documentation makes verification impossible.

Unfortunately, even the groups that have disaggregated error type messages may

not have been as comprehensive as they could have been in designing their

disaggregations. Consider for example the "cannot find symbol-class" error type

message. If it is followed by the word "string," a knowledgeable instructor might suspect

that the underlying error is in fact a capitalization problem. However, if the error type

message is "cannot find symbol-class" and it is followed by the word "Scanner," the

likely error is not a capitalization problem, but rather a missing import statement.

www.manaraa.com

66
Similarly, the compiler will frequently report a "missing semicolon" when the student

has imbalanced parentheses. In this research, the term "underlying error" refers to

problems such as capitalization and missing import or missing parentheses. No other

research that we are aware of classifies student questions or code snapshots according to

their underlying errors.

A naive approach to incorporating compiler output into the vector space model

would be to simply tokenize the error messages and include them just as the natural

language was included. The problem is that errors such as missing import and

capitalization will appear to be very similar because they contain four similar tokens

("cannot," "find," "symbol," and "class"), and the algorithm will be unable to distinguish

between them. To remediate this problem, some of the most common compiler errors

and code snapshots are processed by Java code that generates a brief description of the

underlying error based on the code snapshot and then the underlying error is incorporated

into the model. To facilitate replication, the conversions from compiler errors to the

underlying error representation used in this research are described in Table 4.5. Of the

nine compiler errors that the system processes, five are ambiguous, and the system uses

information from the Internet and the students' source code to pinpoint the exact error.

Table 4.6 shows vector representations for three compiler errors. Again, these

vectors are based on the same general approach used for the natural language, and once

again, these rows would extend the existing matrix with natural language.

• cannot find symbol class string (CE1)
• cannot find symbol class Scanner (CE2)
• variable foo is already defined (CE3)

www.manaraa.com

67
Table 4.5. Conversion of Compiler Errors to Underlying Error Terms

Compiler Error
Contains "already defined"
Contains "incompatible types"
Contains "not have been initialized"
Contains "cannot find symbol-
constructor"
Contains "cannot find symbol-class"
AND search engine returns more than
100,000 hits when searching for the
specific class AND the first result is
capitalized differently than the
specific class
Contains "cannot find symbol-class"
AND the source code does not
contain the pertinent import statement
Contains "cannot find symbol-class"
OR "cannot find symbol-variable"
AND the source code contains
another symbol that is capitalized
differently
Contains "cannot find symbol-
variable" AND the source code
contains that symbol followed by a
parenthesis
Contains "cannot find symbol-
method" AND and the source code
contains that symbol followed by a
parenthesis

Natural Language Representation
alreadyDefined
incompatibleTypes
notHaveBeenlnitialized
cfsConstructor

cfsCapitalization

cfsMissinglmport

cfsCapitalization

cfsMissingParenthesis

cfsMethodMismatch

Table 4.6. Database Representation of Compiler Errors

CE1
CE2
CE2

Capitalizat
1
0
0

missinglmport
0
1
1

alreadyDefined
0
0
1

www.manaraa.com

68
4.6 Answer Caching

Previous work has exploited a technique called answer caching to provide

answers to some questions that utilize different wordings to express the same information

need [58]. Answer caching matches an incoming question to a similar previous question

in order to recycle an answer. The answer caching technique then leverages the

additional language in the similar question to build a more robust language model of that

information need. Specifically, answer caching merges the data from vectors that

indicate a similar information need to form a single vector. Without answer caching, the

five questions in Table 4.1 are modeled with five vectors. With answer caching, they are

represented with two vectors, one for "File extension extraction" (the sum of the vectors

for Ql and Q3) and one for "Integer division" (the sum of the vectors for Q2, Q4, and

Q5). The original paper on answer caching reports a 1-3% improvement on a dataset

with well-formed, grammatical, well-spelled questions. Figure 4.2 demonstrates a similar

improvement when incorporating both answer caching and the processed error messages.

Interestingly, the processed error messages alone do not improve classification, and

answer caching alone only produces minor improvements (< 1%), but the combination of

the techniques improves accuracy by 3% of the total questions. As shown in Table 4.7

answer caching does not improve classification for the compiler errors by themselves.

This is probably because the recency algorithm chooses the question added to the model

most recently, not the question asked most recently. However, answer caching helps

substantially when the natural language is included in the model. The number of

correctly classified questions (or numerator) for the "With Answer Caching and Error

www.manaraa.com

69

Classification Accuracy
(0 - ^
si •<-•

.2 <u
<-• i _
w o

o °
3 O
O -o
<-• 0) 8 •
w 0)
Q) ffi

0. o

50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

:=ri=ri=rt=rt
D Total Questions

• Repetitive Questions

Baseline
(Cosine
Similarity

with
Natural

With
Answer
Caching

With Error
Messages

With
Answer
Caching
and Error

Messages

Classification Method

Figure 4.2. Classification Accuracy with Answer Caching and Error Messages

Table 4.7. Questions Classified Correctly with Compiler Error Messages

Baseline

With Natural
Language Terms

Raw Compiler Error Messages

Without Answer
Caching

79

94

With Answer
Caching

34

96

Processed Compiler Error Messages

Without
Answer
Caching

79

92

With Answer Caching

24

104

Messages" method is 104, and the denominators are the same as they was in the baseline

conditions, 411 for total questions and 268 for repetitive questions.

4.7 Disaggregating by Assignment

For a final improvement in classification accuracy, the data was disaggregated by

assignment. For example, assignment 1 questions were compared only to other

assignment 1 questions and assignments questions were compared only other assignments

www.manaraa.com

70
questions. As shown in Table 4.8 and Figure 4.3, this technique improved the number

of correctly classified questions (or numerator) to 113. To facilitate comparison in the

bar charts, we reuse the same denominators, 411 total questions and 268 repetitive

questions. However, when only comparing questions from the same assignment, the

number of repetitive questions is smaller (201) and that denominator gives a

classification accuracy of 56% of repetitive questions. With the data disaggregated by

assignment, incorporating answer caching and error messages reduced accuracy slightly

(101 questions classified correctly or 50% when 201 is the denominator). Statistical

significance tests are omitted as explained in 4.4.1.

The lack of sufficient data to model different kinds of compiler errors is probably

the cause of a drop in accuracy when answer caching and error messages are

incorporated. Because compiler errors are being reduced to a single term, several of them

are necessary to boost the compiler error terms to a heavy enough weight to influence the

similarity algorithm. However, excluding error messages and answer caching returns the

classification algorithm to a domain independent state. Compiler error messages are a

source of data that are relevant only in the computer science domain. By contrast, natural

language and assignment numbers are a data source that is available in virtually every

educational domain. The claim that the system is domain independent is strictly

theoretical without empirical data from another domain, but it is a positive claim.

www.manaraa.com

71
Table 4.8. Classification Accuracies

Baseline

With Error Msgs
and Answer Cache

Aggregated

Total Questions
93/411
(23%)

104/411
(25%)

Repetitive Questions
93/275
(35%)

104/275
(39%)

Disaggregated

Total Questions
113/411
(27%)

111/411
(27%)

Repetitive Questions
113/204
(55%)

111/204
(54%)

Classification Accuracy

|0/. ____

• Total Questions

• Repetitive Questions

Baseline (Cosine With Answer With
Similarity with Caching and Error Disaggregation by

Natural Language) Messages Assignment

Classification Method

Figure 4.3. Classification Accuracy with Disaggregation by Assignment

4.7.1 Analysis of Errors

Comparing individual instances of questions that the three major classification

algorithms (baseline, domain knowledge, and compiler errors) classified differently is

difficult because many elements are changing in each condition, including both the

number of questions that a question is compared to and the weights of the terms in a

question. Furthermore, the quantity of these changes is substantial enough that trying to

manually understand them will probably cause cognitive overload. However, for

www.manaraa.com

72
comparison, this section presents an analysis of some of the questions that were

classified correctly and incorrectly by various algorithms.

4.7.1.1 Baseline vs. Domain Knowledge (Processed Compiler Errors)

Of the 14 instances that the baseline condition classified correctly and the domain

knowledge condition classified incorrectly, only 3 had compiler errors. Many of the

questions in this category appeared to be broad questions expressed in few words. For

example:

• I need help with while loop and linked list.
• I need help with the maze.
• Is there any help on how to draw a pyramid?

• TANAME i need your help when you get a chance.

Of the 25 instances that the domain knowledge condition classified correctly and

the baseline classified incorrectly, 8 had compiler errors. Surprisingly, the majority of

these were submitted with code that compiled. However, incorporating the information

from error messages would have changed the weights in the model, and that may have

caused the algorithm to make fewer mis-matches. Some examples of questions in this

category include:

• Im having trouble understanding why (1/9) equals 0.0 instead of 0.1111....
• I am trying to fix my count CorrectChars method- i know what i want to do but

not sure how to fix it
• my program cannot find the class file
• my compiler is saying it cant find setPrevious method even though i am passing it

the right parameters

www.manaraa.com

73
4.7.1.2 Baseline vs. Educational Context (Assignment)

Of the 16 instances that the baseline condition classified correctly and the

educational context condition classified incorrectly, only 3 had compiler errors. Many of

these questions demonstrated at least some mastery of domain vocabulary. For example:

• Hello, I have no idea how to scale these pyramids. Can you point me in the right
direction? Yeah, I have that code, but in the lab friday... The smiley DID NOT
scale correctly, and TA_NAME said he didnt have time to fix it. So he told us to
just worry about the x,y position

• Getting some dumb null pointer nonsense

• So we dont use g.fillpolygon right? we are suppose to use g.drawLine ?

Of the 36 instances that the educational context condition classified correctly and

the baseline classified incorrectly, 2 had compiler errors. Many of these questions appear

to have come from student seeking reassurance that they were on the right path and

making progresss towards completing their assignment. Some examples of questions in

this category include:

• I am wondering if my class looks good or i should change a few things- i think it
looks good, i am looking at the documentation

• Im not really sure if Im doing this correctly or not, I cant find any examples of
contstructor stubs in the book.

• Is there any way I can prevent an "index out of bouds exception" on my array?
String [][] mazeArray = new String [cols][rows]; mazeArray [cols - l][rows] =
"S"; Obviously cols - 1 is out of bounds, but canl somehow make it null or
something along those lines?

• Alright I think I got it all. How does that look? Oh and any suggestions on code
formating or commenting?

4.8 Alternative Evaluations of Question Answering Systems

The most accurate classification algorithm found similar previous questions for

27% of the questions or 42% of repetitive questions. Unfortunately, automatically

www.manaraa.com

74
determining whether or not there is a similar previous question (or if this question is

repetitive) is a prerequisite to exploiting similar questions in a tutorial intervention. One

possible method of distinguishing between true positives and false positives utilizes the

similarity score of the "most similar" question. The similarity score of the "most similar"

question is considered the "maximum similarity score". With an ideal threshold, all of

the true positives (questions with correct similar previous questions) have a maximum

similarity score above threshold, and the false positives (questions without similar

previous questions) have a maximum similarity score below threshold. Figure 4.4 is an

attempt to find an appropriate threshold. The independent variable is the maximum

similarity score for a question, and the dependent variable is 0 if the algorithm did not

find a similar previous question and 1 if the algorithm correctly identified a similar

question. If Figure 4.4 were a step function, then the threshold would be at the step.

Figure 4.4. Thresholding

www.manaraa.com

75

Figure 4.4 is a great way to visualize data while searching for thresholds, but

cannot quantitatively measure the trade-offs between confidence and accuracy. To

measure this trade-off, the TREC 2002 Question Answering Track of the Text REtrieval

Conference (TREC) utilized confidence weighted scores as shown in Equation 4.3 [82].

The maximum similarity score for a question is also a measure of confidence; a higher

maximum similarity score suggests that the system is more confident that the answer is

correct. Consequently, the maximum similarity scores can be used to rank the questions

from most to least confident.

In mathematical notation, a sequence of Q questions is sorted based on the

maximum similarity score. The rank i of a question is the index of that question in the

sorted sequence. A low value of i indicates a high maximum similarity score and a high

value of i indicates a low maximum similarity score.

The confidence weighted score is shown in Figure 4.5 as a function of the number

of questions. The x axis indicates the number of questions included sorted by descending

order of maximum similarity score. The y axis indicates the confidence similarity score.

The VTA system has a confidence weighted score of 0.41. This is a reasonable score for

this task and dataset.

Equation 4.3. Confidence Weighted Score

1 ^ number correct in first i ranks

www.manaraa.com

76

Figure 4.5. Confidence Weighted Score

Although identifying the appropriate information on the first try is desirable, it is

not an essential characteristic of a good information retrieval algorithm. Search engines

typically return thousands of results for a single query, and it is not unusual for users to

consult multiple links before finding the desired information. One measurement that

considers multiple possibilities is mean reciprocal rank. Using mean reciprocal rank, a

system considers a ranked list of possible answers for each query or question. The score

that a system receives for each question is the reciprocal of the rank of the possible

answer that contains the actual answer. If the rank of the possible answer that contains

the actual answer is greater than 5, the system receives a score of 0 for that question.

Because the system is using answer caching, at most one of the possible answers will

match the actual answer. Using mean reciprocal rank, 40% of the questions had a score

greater than or equal to 0.2. The number of questions asked is shown as a function of

www.manaraa.com

77
mean reciprocal rank for the 40% of questions with a score greater than or equal to 0.2

in Figure 4.6.

The mean reciprocal rank score of an entire system is the average of the mean

reciprocal rank scores of all the questions asked using the system. Using all of the

questions, the VTA system has a mean reciprocal rank of 0.31. Using only the repetitive

question, the VTA system has a mean reciprocal rank of 0.46. These scores are

reasonable.

4.9 Synthesizing an Algorithm to Classify Questions

The majority of this chapter is focused on analysis of the data and various

measurements. One point of concern is that incorporating compiler errors does not

improve accuracy when the assignment is disaggregated by assignment. Table 4.9

shows the accuracies for the three major classification algorithms when the code is

Figure 4.6. Reciprocal Rank Score

www.manaraa.com

78
Table 4.9. Classification Accuracies when Disaggregated by Compiler Error

Algorithm
baseline
domain
context
baseline
domain
context

Compiler Status
didNotCompile
didNotCompile
didNotCompile
Compiled
Compiled
compiled

Accuracy
0.146199
0.210526
0.169591
0.283333
0.283333

0.35

disaggregated based on whether or not it compiled. Not surprisingly, the best algorithm

when the code does not compile is the domain knowledge algorithm that includes

compiler errors. The best algorithm when the code does compile is the context algorithm

that only compares to other questions from the same assignment. Whether or not the

code compiles is easy to automatically compute, and using the results, the system can

automatically decide to use the appropriate algorithm, similar to previous work on

choosing a correct intervention for students learning to read [39]. By using the

information about whether or not the code compiles, the system can automatically select

the more accurate classification algorithm to classify 119 questions or 29% of the total

questions and 44% of the repetitive questions correctly as shown in Figure 4.7.

Finally, if the cosine similarity score is below .15, the likelihood is very great that

the system does not have an answer for the question, and approximately 20% of the data

falls into this bin. For these questions, the system would not even attempt an answer. For

the questions where the system thinks it might have an answer, 40% of the time the

correct answer is one of the top five ranked answers. Assume that the system returns five

possible matching questions and answers for each query, and assume that the system does

www.manaraa.com

79

i
Classification Accuracy

50.00%
rno/-

s 25:00%
10/

o 3

c
0) o
0)
0.

1g«
0.00% WW

Baseline With Answer With Choosing
(Cosine Caching ancDisaggregation Algorithm

Similarity with Error by Assignment Based on
Natural Messages Compilation

Language)
Classification Method

• Total Questions

• Repetitive Questions

Figure 4.7. Classification Accuracies

not even try to answer the 20% of the questions with the lowest cosine similarity, so that

the system is only attempting to answer 80% of the questions. Then the system will

return a relevant answer for 40% of all questions divided by 80% of questions attempted

or 50% of the time. That is probably good enough to be potentially useful in a real

classroom setting.

4.10 A Theoretical Cost and Benefit Analysis

The introduction began by suggesting that human resources for courses represent

a significant cost in education that could be reduced by the clever application of

technology. An empirical analysis of this issue is beyond the scope of the dissertation;

however, a theoretical analysis is presented here in the hopes that it may inform future

studies.

www.manaraa.com

80
At least four major input variables would influence the value of this system;

they are the quality of the instructing staff, the availability of the instructing staff, the

quality of the answers in the system, and the quality of the classification algorithm. For

now, it is reasonable to suppose that the quality of the classification algorithm is going to

be somewhat bad, between 25% and 50% accurate. Because a quality instructor could be

hired to write answers for the system, it is reasonable to assume that the quality of the

answers in the system will be quite good. The quality and the availability of the teaching

staff are much more difficult to measure and evaluate, and will vary greatly depending on

the courses in which the system is deployed. Large introductory courses typically

employ several teaching assistants, and the quality of the teaching assistants in the

introductory courses usually varies greatly including some of the best and some of the

worst within the department. The best teaching assistants and the professor are probably

available for a maximum of ten hours a week combined. The remaining teaching

assistants may be available for as little as ten hours a week or as much as the whole week,

but they may or may not be able to provide useful help and feedback. Since many novice

programming students plan to program at midnight, and most instructors are not available

then, it is reasonable to suppose that the availability of the instructional staff is not good,

and may even be bad.

Given a question, the system can do one of three things; the system can answer

correctly, the system can answer incorrectly, and the system can decide to wait for a

human to answer the question. If the system answers correctly by recycling an answer, it

saves human instructional staff time, and depending on the availability of the

www.manaraa.com

81
instructional staff (which is probably not good), it saves substantial student time. If the

system answers incorrectly, it may cause student frustration and/or confusion; however, if

the instructional staff was unavailable (which is probable), then student frustration and/or

confusion may have been inevitable anyway. If the system waits for a human to answer

the question, then the system does not fundamentally change the outcome. Thus, the

chief benefit of the system is the potentital to save human time for both the student and

the instructional staff. The chief costs of the system are potential frustration for students

(which may be inevitable) and the time to develop the system, which should be close to a

constant assuming a stable portfolio of assignments.

www.manaraa.com

CHAPTER 5

PERIPHERAL ANALYSES

The process of completing the research for a dissertation often allows a researcher

to explore several possibilities, including some that are not empirically impressive. This

chapter includes justification for excluding some analysis techniques as well as some

miscellaneous results that are not directly related to those already presented. They are

included because they may be useful to other researchers with similar but different

research interests.

5.1 Latent Semantic Analysis

In Latent Semantic Analysis (LSA) [52], a form of principle component analysis

called singular value decomposition reduces the dimensionality of the matrix. Then,

cosine similarity is calculated on the rows of the matrix. LSA has a strong theoretical

foundation including a link to human cognition and learning that provides a very

appealing foundation [52]. Additionally, LSA has previously been implemented in the

AutoTutor intelligent tutoring system as described by Hastings1, Graesser, and

colleagues. That research group tuned the parameters for LSA and found slightly

stronger performance by altering features such as the amount of training data and the

1 Hastings has recently dropped the Wiemer portion of his last name.

www.manaraa.com

83
number of dimensions in the matrix [87]. They found that 400 terms in the final

matrix was an ideal number for LSA, a result that has been recently replicated in other

literature [18].

Those results combined with measurements of the data used for this research

suggest that LSA is probably not appropriate for the task of classifying novice

programmer questions. Since the assignments have an average of 30 questions each, and

each question has an average of 6 terms after stop words are removed, and many of those

words are repetitive across questions, theoretically, the total number of terms for a typical

assignment is less than 200. Figure 5.1 confirms this empirically. Both the theoretical

and empirical analyses confirm that this data are well out of the range in which LSA

would produce optimal performance according to existing theory. Consequently, LSA

was not investigated as an empirical technique for this dataset.

Terms per Assignment

D Natural Language

• Natural Language with
ErrorMessages

10

E

350
300
250
200
150
100
50
0 SHpflMtfffi^

<v - * 8̂> A Q AN & <$? « ' / <r i ? # <?> & & & «y <>
•& c^ ^ c^ J ^ -dr <̂ <# <4r c^ c^ c^

*" <?
#s

<? &
&

<F <6' f

Assignment

d»

Figure 5.1. Terms per Assignment

www.manaraa.com

84
5.2 Negative Results with Source Code

Designing abstract representations of student source code that are conducive to

classification remains a difficult open problem. Simply tokenizing source code and

extending vector representations with token types was not effective at all. A marginally

effective alternative is to use a sequence of three tokens to create a trigram, and then

build a vector representation of trigrams. For example, consider the following line of

code:

(4+5)/(6+7));

That line of code can be broken into the following trigram sequences

(4+ 4+5 +5) 5)/)/(/(6 (6+ 6+7 +7) 7))));

These trigrams can then be used to extend the vector space models in a manner similar to

the natural language additions. That approach was somewhat effective for one

assignment, assignment6. In that dataset of 27 questions, six were repetitive, and the

algorithm found four similar previous questions including extra semicolon and integer

division errors and two on the structure of a method. However, when the data for that

assignment was mixed with other assignments, any improvement in classification

accuracy was lost. Creating partial parse trees or alignments of student code that does not

compile remains an open problem.

Another alternative to incorporating student source code that may be more fruitful

is applying a different measurement of similarity. This research utilizes cosine similarity

because it has become the standard for tutorial dialog; however, that measurement was

www.manaraa.com

85
originally used in the information retrieval literature. Part of the justification for using

cosine similarity in traditional information retrieval is that neither the query nor the

document is more important in determining a match. However, a query is often quite

short (typically two words, e.g., [44]), and a document is typically much longer. By

normalizing the vectors before comparing them, the weight given to the documents and

queries is distributed evenly. Similarly, when comparing two student questions, a

verbose question is not necessarily more important than a less verbose question.

However, when comparing answer strings or student programs or responses, the fact that

a program is longer often indicates that a student has made more progress. In such a

scenario, using distances of vectors that have not been normalized may be more

appropriate than cosine similarity.

5.3 Skipping Steps to Increase Accuracy

Calculating the cosine similarity of two vectors is essentially a two step process.

To calculate the numerator, the dot product of the two vectors is calculated. To calculate

the denominator, the square root of the sum of the squares is calculated in order to

normalize the vectors. In the process of writing and debugging the analysis code, I

inadvertently discovered that skipping the square root step in the normalization step of

calculating the denominator produces minor improvements in classification accuracy. In

the condition with the highest classification accuracy (disaggregation by assignment), this

minor modification improved classification accuracy by one question. In some of the

other conditions, it improved accuracy by a few more questions, but not enough to

www.manaraa.com

86
compete with the disaaggregation by assignment condition. Since the weights

representing the words are all decimal values between 0 and 1, taking the square root of

the values shrinks the spectrum and redistribute the weight. Consequently, I speculate

that the square root step gives more weight to less important words and less weight to

more important words.

I reverted to the traditional definition of cosine similarity (and I have used it

throughout the dissertation) to facilitate scientific comparison, but I note here that

skipping the square root step does appear to slightly improve accuracy, and it would be

less computationally expensive to skip that step.

5.4 A Trained System to Classify Student Questions

The research described in previous chapters of the dissertation employs an online

learning framework to analyze and classify the questions that students ask. This

approach is most appropriate while the system is learning and training on initial data; it

models how a system would perform in its first semester. However, many courses

recycle assignments across semesters, providing an extra source of redundancy that could

be leveraged to potentially improve accuracy. The dataset collected for this dissertation

facilitates two analyses in this area.

5.4.1 Exploiting Redundancy Across Semesters

The first analysis examines whether or not including the data from Spring 2008

can improve the accuracy when classifying data from Fall 2008, using data from

www.manaraa.com

87
assignments and assignment4 in Spring 2008 and assignment03 and assignment04 in

Fall 2008. Assignments and assignment03 are the same assignment, given in different

semesters, and assignment4 and assignment04 are also the same assignment, given in

different semesters. Table 5.1 shows data from individual assignments as well as similar

questions aggregated across semesters. Similar questions found indicates how many

similar questions the online learning analysis algorithm found. Repetitive questions and

total questions are self explanatory. Unique answer categories indicates how many

different answer categories assignment(s) had.

As Table 5.1 shows, aggregating across assignments was less effective for

assignments and assignment03 because disaggregated the algorithm could classify 18

(5+13) questions, but aggregated the algorithm could classify only 13 questions, for a

loss of five questions. However, for assignment4 and assignment04, aggregating across

assignments was effective, classifying 48 questions accurately compared to 46 (9+37)

when the assignments are disaggregated. These results are divergent and inconclusive.

The unique answer categories column is somewhat revealing. In assignment3 and

assignment03, merging categories across assignments reduces the total number of

Table 5.1. Redundancy Across Semesters

assignments
assignment03
assignments3 & 03
assignment4
assignment04
assignments4 & 04

Similar
Questions
Found

5
13
13
9

37
48

Repetitive
Questions

7
17
25
14
41
57

Total
Questions

14
26
40
24
51
75

Unique
Answer
Categories

7
9

15
10
10
18

www.manaraa.com

88
categories by 1 ((7+9)-15); however, in assignment4 and assignments, merging

across assignments reduces the total number of categories by 2 ((10+10)-2). In both

cases, it appears that questions that are asked only once in a semester are unlikely to be

asked again in future semesters.

5.4.2 A Batched Classification Approach

Another way to study redundancy across semesters is to apply a batched learning

approach instead of an online learning approach. With an online learning approach, the

first question of an answer category will never be similar to another question. With a

batched approach, the first question of an answer category could be found to be similar to

another question if there is more than one question in that answer category.

Additionally, with an online learning approach, each question is compared only to

previous questions, but in a batched approach, each question is compared to all other

questions, including questions asked after it. In the batched setting, the language model

is completely trained before a question is classified.

More questions would be considered repetitive with a batched approach. Table

5.2 compares the number of questions classified correctly in the online version and a

Table 5.2. Counts and Percentages of Correctly Classified Total Questions

Aggregated Without Caching
Aggregated With Caching
Disaggregated Without Caching
Disaggregated With Caching

Online
98 (24%)
104 (25%)
111(27%)
101 (25%)

Batched
117(28%)
111(27%)
135 (33%)
126(31%)

www.manaraa.com

89
batched version, both when the data are aggregated and disaggregated across

assignment and with and without answer caching. In all four major settings, the error

messages are included in the model. As expected, the batched version classified more

questions correctly, and a larger percentage of the total questions. The numbers in

parentheses indicate the percentage of total questions classified correctly, with 411 as the

denominator, since there are 411 total questions.

Table 5.3 is similar to Table 5.2 with one major exception, the denominators used

in calculating the percentages are based on repetitive questions instead of total questions.

In the aggregated online setting, the denominator is 268, and in the disaggregated online

setting, the denominator is 201. In the batched aggregated setting, the denominator is

329, and in the batched disaggregated setting the denominator is 273. As before, the

batched version still classified more questions correctly by counts, but a smaller

percentage of the repetitive questions. One major problem with the supervised paradigm

from a pedagogical standpoint is that to be useful, an instructor must commit to recycling

assignments year after year to leverage improvements over the online setting. The online

approach by contrast gives the instructor more freedom to change and adapt assignments,

while still preserving relatively good classification accuracy.

Table 5.3. Counts and Percentages of Correctly Classified Repetitive Questions

Aggregated Without Caching
Aggregated With Caching
Disaggregated Without Caching
Disaggregated With Caching

Online
98 (37%)
104 (39%)
114(55%)
111(50%)

Batched
117(36%)
111(34%)
135 (49%)
126 (46%)

www.manaraa.com

90
5.4.3 A Supervised Learning Approach

For comparison purposes, I ran a supervised machine learning analysis using

decision trees with 10-fold cross validation in Weka [88] on the natural language and the

processed compiler errors. As shown in Figure 5.2, the top level decision word was

"pyramid" indicating a large number of questions about the pyramid assignment

(assignment4 and assignment04). The final tree had 27 nodes and a size of 53. With a

classification accuracy of 96/398 or 24%, it is actually less accurate than the same data

run through the online learning framework, probably because the online learning

framework can leverage recency. Slightly fewer questions were included in the

supervised setting because questions with no terms were excluded to facilitate using

existing software.

www.manaraa.com

91
pyramid < 0.5
j font < 0.5
j | payment < 0.5
j j j extens < 0.5
j I j | cfsmissingimport < 0.5
j j j j | insertaft < 0.5
j j j j I | pointer < 0.5
j I I j I I I quarter < 0.5
I j I j I I I I amount < 0.5
I j I I I I I I I namedcompon < 0.5
I I I I I I I I I I start < 0.5
I I I I I I I I I I I document < 0.5
I I I I I I I I j I I I arrai < 0.5
j j j j j j j j j j j j | cfsmethodmismatch < 0.5
j j j j j j j j j j j j j | nothavebeeniniti < 0.5
I I I I I I I I I I I I I i I dot < 0.5
j j j j j j j j j j j I j j j | monthlypay < 0.5
I I I I I I I I I I I I I I I I I part < 0.5
I I I I I I I I I I I I I I I I I I equal < 1.5
| I I I I I I I I I I | j j | I I I I test < 0.5: Positioning pyramids 2+3(12.0/212.0)
j | | | | | | | | | | | | j j j j j | test >= 0.5: Test Cases(4.0/7.0)
j j j j j j j | j j j j j j j j j j equal >= 1.5: Gameword equals method(2.0/0.0)
I I I j I I I I j I I I I I I I I part >= 0.5: Constructor stubs(2.0/0.0)
I j I j j I j I I I I I I I j j monthlypay >= 0.5: Mortgage calculation(2.0/0.0)
j | | | j j | j j j j j j j | dot >= 0.5: File extension extraction(2.0/0.0)
j I I I j I I I I I I j I I nothavebeeniniti >= 0.5: Variable initialization^.0/0.0)
j I I j j I I I I I I | | cfsmethodmismatch >= 0.5: Class and method mismatch(6.0/13.0)
I I I I I I I I I I I I a r r a i > = 0.5
I I I I I I I I I I I I I rectangl < 0.5
I I I I I I I I I I I I I I file < 0.5
I j I I I I I I I I I I I I I revers < 0.5: Array index out of bounds exception(3.0/8.0)
I I I I I I I I I I I I I I j revers >= 0.5: Incompatible types(2.0/0.0)
I I I I I I I I I I I I I I file >= 0.5: Unique files structure(3.0/2.0)
I I I I I I I I I I I I I rectangl >= 0.5: findSmallest structure(3.0/1.0)
I j I j I I j I I I I document >= 0.5: JavaDoc documentation generation(3.0/1.0)
I j I I I I I I I I start >= 0.5
I I I I I I I I I I I assign < 0.5: get shortest path structure(3.0/9.0)
I j I I I j I I I I I assign >= 0.5: Getting started(5.0/0.0)
I I I I I I I I I namedcompon >= 0.5: Named Component(4.0/2.0)
I I I j I j I I amount >= 0.5: Mortgage calculation(3.0/0.0)
| j | I I j j quarter >= 0.5: ChangeToDollars(3.0/0.0)
| j j j j j pointer >= 0.5: null pointer exception(3.0/0.0)
j j j | j insertaft >= 0.5: Insert after node structure(5.0/1.0)
| j | j cfsmissingimport >= 0.5: Missing import statement(6.0/2.0)
j | j extens >= 0.5: File extension extraction(6.0/0.0)
j j payment >= 0.5
j j | mortag < 0.5: Mortgage calculation(8.0/0.0)
| | | mortag >= 0.5: Test Cases(3.0/0.0)
j font >= 0.5: Using fonts(10.0/1.0)
pyramid >= 0.5
| method < 1.0: Positioning pyramids 2+3(29.0/3.0)

Figure 5.2. Decision Tree

www.manaraa.com

CHAPTER 6

CHALLENGES IN COLLECTING DATA

The data collection tool (software artifact) and the analysis framework are both

contributions that are described in great detail in previous chapters of the dissertation.

The data are also described in a previous chapter, but without much discussion of why it

is an important contribution and why it is challenging to acquire the kind of data required.

This chapter describes why it is difficult to do the kind of research described in the

dissertation and explains in greater detail why the data are a valuable contribution in their

own right. The final section speculates about how the data might be used in future

research.

6.1 Dearth of Existing Data

Although many papers have been written both on the broader topic of tutorial

dialog and on the narrower topic of automatically answering student questions, it is not at

all clear that the results transfer to other domains, platforms, and educational settings.

6.1.1 Single Domain Systems with Paid Subjects

At least two of the longer lines of tutorial dialog research have focused on a single

domain, and they have used paid subjects. The CIRCISM project [29] focused on

www.manaraa.com

93
tutoring medical students on circulation, and the JavaTutor project [17] is focusing on

tutoring students in Java. Both projects collect data by paying subjects to participate in

tutorial dialogs, usually in a wizard-of-oz style study with the tutor and student in

separate rooms. Such studies are very expensive to run because an expert must be paid to

tutor the student and the student must be paid. Furthermore, recruiting students to

participate can be expensive and difficult, and some psychology research suggests that

paying subjects can alter results (e.g., [68]). While such a setting generates many more

dialog turns than a traditional classroom or laboratory setting, it is not clear that the

results of such studies generalize to more traditional and economical educational settings.

6.1.2 Tutorial Dialog Linked to Model Tracing Tutors

Other longer lines of tutorial dialog research include the AutoTutor project (e.g.

[84]) and the WHY-2 projects (e.g. [79]). Both of those have explored more than one

domain, but the number of domains is still very small (approximately three). Most of

their tutorial dialog appears to be tutor-initiated instead of student-initiated, and it appears

that the tutoring prompts contain significant vocabulary to scaffold student responses.

These systems also often depend on a relatively tight connection to a complicated

tutoring system such as a model-tracing tutor, which are known to be expensive platforms

in which to engineer educational content. As a result, their research is often based on

only a few problems that might be covered in a week instead of being based on the

spectrum of problems that would be covered over the course of a semester. The

scalability of such a system over a larger curriculum is debatable at best.

www.manaraa.com

94

6.1.3 Potential Problems with Processing Existing Data

Data collection is full of trade-offs and design decisions, including grain size,

raw feature set, and taxonomies for tagging. Much existing data on the questions that

students ask is situated in extremely rich, but difficult to mine tutorial dialog, and at least

some of the projects have not released their raw data to the larger research community.

For example, the JavaTutor corpus consists of both free-form tutorial dialog with

programming experts and keystroke data from beginning programmers. That corpus is

not currently publicly available, but if it were, to be usable for a replication study on

question classification, the questions and answers would have to be extracted from the

dialog, probably manually. Then, the answers would have to be tagged according to the

same taxonomy, again probably manually. Then, at least part of the data would have to

be tagged again to establish interrater reliability. Only then would it be possible to

attempt to replicate the automatic classification of questions.

6.1.4 General Problems with Extracting Questions from Tutorial Dialog

The questions asked in a tutorial dialog may differ from the questions that

students ask spontaneously in a classroom. The questions in tutorial dialog appear to

suffer from a stream-of-consciousness problem that is typical of think-aloud protocols.

Such a setting can create a social pressure to communicate, and any questions collected

may not reflect a genuine information need. Questions from tutorial dialog often fail to

reflect distinct points of difficulty in the learning process, making it difficult to isolate

students' most challenging questions. In summary, the questions in tutorial dialog may

www.manaraa.com

95
differ substantially from the questions that they ask spontaneously when they have a

genuine information need.

6.2 Difficulties of Collecting Data

6.2.1 The Quantity Problem

Students do not ask questions very often. One estimate in the literature for

elementary students is an averate rate of "one question per hour" [35, 56]. This

dissertation had a similar data collection rate for a much older student population. One

on one tutoring and other settings in which the instructional staff prompts the student

appears to increase the rate of question asking, but even with additional prompting

students do not ask very many questions, and the quality of the questions is somewhat

lower [35, 56]. Furthermore, as this dissertation has demonstrated, the majority of the

questions are often asked by a few students, with the majority of students never asking

any questions. The difficulties of studying the questions that students ask and generating

scientifically valid results with meaningful measures of statistical significance have

exacerbated the dearth of existing data.

6.2.2 The Quality Problem

Not only do students ask questions infrequently, the questions that they ask are

often poorly articulated and impossible to answer out of context. This makes

automatically identifying and answering such questions difficult, and it also complicates

research to accomplish these tasks automatically. For example, students might say "I'm

www.manaraa.com

96
stuck." Such a sentence clearly carries two implied questions, 1) "Did I do something

wrong?" and 2) "What is the next step?", but a computer program looking for simple,

shallow features such as a question mark may fail to recognize that "I'm stuck" is even a

kind of a question. Furthermore, a question such as "I'm stuck" requires some context to

answer. At a minimum, the requirements are a model of an ideal solution, the student's

partial solution, and a method for aligning the two in order to identify deficiencies. In ill-

defined domains, such as programming where there are multiple correct solutions, an

additional step is necessary to choose the best solution for the current student.

6.2.3 Lack of Existing Tools

The difficulty of collecting data is compounded by a lack of adequate existing

tools. Little research funding exists to promote the creation of good tools, and most

existing tools are hacked together compounds that rely on several existing pieces of

software. For example, the Marmoset project captures snapshots of student code (e.g.

[73]), Marmoset functions as a plugin in the Eclipse environment using CVS repositories.

To use Marmoset, the end-user must install CVS, Eclipse, and Marmoset, three separate

installations, and root access would probably also be necessary to deploy the software.

The requirement of root access would make modifying the software difficult and induce

an extra dependency in the software update cycle. Additionally, the software

dependencies make it unsuitable for introductory classes that use another IDE such as

BlueJ. At least Marmoset is an open source project which would facilitate obtaining the

source code. Other projects, such as AutoTutor, are not open source, and the source code

www.manaraa.com

97
is not available. Recent effots have attempted to create an open source version of

AutoTutor. Sometimes the tutoring system is available only as an executable, making it

impossible to modify the functionality and run the desired experiment on a particular

tutoring platform.

6.2.4 Obtaining Approval

One of the great difficulties in collecting data for any kind of human subjects

research is simply obtaining the necessary approval. The Institutional Review Board

(IRB) approved the experimental design. Collecting data in a traditional laboratory

setting as part of traditional laboratory activities helped the study to qualify for an

expedited review and also allowed me to avoid collecting consent forms, two additional

obstacles that would have had to have been leaped with different protocols. I worked

closely with both my advisor and his PhD student who were teaching the introductory

course when I was designing the software to insure that it would have instructor approval.

Although I needed instructor approval to deploy the software in a course, the instructor

did not actually use the software much at all. Instead, the teaching assistants utilized the

software. After an initial deployment or two it became obvious that the experimental

protocol would need to be relaxed at least a little bit to meet their needs. For example,

the original protocol required the TAs to tag the data and author answers and both of

those requirements were removed. Also, the TAs were still allowed a high degree of

interaction with students, including spoken dialog, that was not captured. Finally, the

software needed to provide at least some benefits to students. The major benefit for

www.manaraa.com

98
students was the ability to ask questions remotely, and there is some anecdotal

evidence that it was effective for at least some students. By allowing all students in the

class to use the software, ethical issues over access were avoided. To ensure that all

students and TA's knew how to use the software, I ran training sessions as part of one of

the required weekly labs at the beginning of both semesters in which the data was

collected.

6.2.5 Authoring Answers and Tagging the Data

One concern that the TAs had was that authoring answers to questions was time-

consuming, and it was not practical when several students were waiting to answers for

questions. Because I was not actually recycling answers, I told the TAs that they did not

need to have the answer recorded, reasoning that I could author answers later when I was

ready to deploy the system with automatic answers. The TAs also had a difficult time

identifying when two questions were similar. Part of this was my fault; I did not

explicitly train them or give them a specific taxonomy to be used when classifying

similar questions. After researching the literature, I realized that compiler errors alone

could be classified in many ways, and there were even more options for free form student

questions. One key choice in developing a taxonomy is where to aggregate and where to

disaggregate, and existing research does not agree on this matter. After spending many

days studying student questions, I bailed on attempting to define a formal taxonomy, and

I simply labeled each question with a word or short phrase describing how I would

answer the question or describe the error, such as "capitalization" or "getNext methohd."

www.manaraa.com

99
Because I had tagged the questions in a somewhat subjective manner, I needed another

human to tag at least some of the data so that I could calculate interrater reliability and

ensure that the labels were capturing a real aspect of the data and not just my

imagination. Because the tagging process involved matching a question to a previous

question, tagging the data alone probably required several weeks of full-time human

attention.

6.3 Requirements for a Software Tool to Collect Data

This dissertation is based on a dataset of 411 questions. Although spontaneous

student questions are rare, the cost of collecting the questions manually may have been

less than the cost of creating a tool to collect the data. The chief advantage to developing

a tool is that it will simplify future data collection efforts and future wider-scale

deployments. This section explains the software requirements for such a tool and

describes some of the difficulties in developing such a tool.

6.3.1 Robust

Data collection took place over more than 20 hours per week when TAs were on

duty, and being available to support the software in person 20 hours a week was not

realistic. That meant that the software needed to be robust enough that both TAs and

students could use it without additional software support, and the software had to be

available when I was not available. Because the software ran on the web and utilized the

web-server, it was important that it be fairly stable and manage resources well. Early

www.manaraa.com

100
versions of the software crashed the web server that was servicing online classes and

that caused problems. Later versions of the software were subject to resource

management reviews. Additionally, because several students may need to ask a question

at once, the software needed to be tested by several students simultaneously. TAs helped

with preliminary versions of multiuser testing, and I attended and led training sessions as

part of a weekly laboratory at the beginning of each semester that provided additional

opportunities to stress test the system for resource management.

6.3.2 Simple Interface

One original goal of the system was to create software that could be used by a

variety of users in a variety of domains. Because most educators and students cannot

program, the interface could not require students to program or require teachers to

program. The only operations that teachers or students have to be able to do to use the

system are a limited amount of typing, a limited amount of file system browsing, and

clicking a button on an interface. To accommodate advanced instructors who know how

to program, the interface would accept the URL of a program or webpage with an applet.

I also worked closely with several TAs to determine what features were useful and not

useful for them.

A key functionality required for my research was the ability to transfer an entire

folder of data easily. Students working on introductory programming projects often

create several files in the same folder for a single assignment, and dependencies often

exist between the files, making it necessary to collect all of them. While several options

www.manaraa.com

101
exist for transferring a single file, no tools that I am aware of facilitate transferring an

entire folder of data. The simplest existing option involved zipping a folder, transferring

it, and then requiring it to be unzipped on the other side, a set of operations too laborious

to expect of a student every time they needed to ask a question. I also needed a queue to

track students and manage several students. While existing chat and personal messaging

applications facilitate communication in a one-on-one or grop setting, they do not

generally include queuing functionality, and they could not be utilized in the very real-

world setting of a typical introductory programming class where a half a dozen students

all wish to ask a question and hope to receive an answer as quickly as possible because

they are racing against the clock to finish their assignment before the deadline.

6.3.3 Modular

A key design goal was to make the system modular and indepdendent, and the

system was at least partially successful in this goal. The analysis software has a pretty

clean separation from the data collection software, and the analysis software can analyze

the same dataset in several ways and compare them. Unfortunately, the data collection

software could be more cleanly separated into separate modules, and the analysis

software could also be more cleanly separated into separate modules. One problem with

the TA interface is that it displays the students' code, but does not provide compiler error

feedback or syntax highlighting. After serious thought, I have concluded that the VTA

system is not meant to be a web-based interactive development environment (IDE), and

the elements of the software that display student code and compiler error messages will

www.manaraa.com

102
probably be factored out in future versions. One reason to try to make the system

indepdendent of other systems was to avoid issues in versioning. For example, I

considered making the system a BlueJ plugin, but there are several versions of BlueJ,

even just in the on-campus laboratory that students use at the University of Utah, and

probably even more considering all of the personal laptop configurations. Different

versions look for plugins in different locations, creating installation problems for a plugin

system. Other software dependencies have potential for additional versioning problems,

so the system was designed to avoid software dependencies to the extent that it is

possible to do so. One major advantage to implementing the system in Java is that Java

runs on Macintosh, Windows, and Linux platforms, increasing user choices.

6.4 A Brief Description of the Data and its Uses

The dataset described in this dissertation consists of 411 spontaneous questions

asked in a laboratory setting in an introductory computer science course. The majority of

the questions were asked by only a few students in the course as shown in Chapter 3

along with other summary statistics. The remainder of this section describes two subsets

of the data collected, the portion that will be publicly released and the portion that will

remain proprietary for now along with an explanation of why not release it.

6.4.1 The Publicly Released Data

One goal in publicly releasing as much data as possible is to facilitate replication

experiments, and the data in the public release set has been carefully selected in order to

www.manaraa.com

103
achieve that goal. The publicly released data include a set of 411 questions

spontaneously asked by students while completing programming assignments.

Specifically, the dataset includes the natural language of the student questions, the

assignment, the timestamp, the original and the processed compiler errors used in the

analysis, and the tags for the answer category. The vast majority of those questions were

collected from students working in a laboratory setting as evidenced by the machine

names. Additionally, the stopword list and symbol list are available to facilitate

replication studies

6.4.2 The Privately Retained Data

In addition to the publicly released data, some data must be privately retained.

For example, the identities of the students and the TAs cannot be released for ethical

reasons. The source code is not being released because it would be difficult to

anonymize it. (Anonymizing source code is probably an independent PhD project.)

Although these data are not currently available to the public, I am still hoping to use at

least some of them for future research projects such as clustering student code.

6.4.3 Uses of the Data

The data could potentially be used in at least two different kinds of experimental

settings. One possibility is to use the data with existing analyses to close the gap between

theoretical belief and empirical knowledge. For example, the analysis from a recent

paper on the subjectivity of questions could be repeated with this data set to determine if

www.manaraa.com

104
the same markers are valid for questions collected in a more traditional educational

setting. The data could be used in future meta-analyses on tutorial dialog to discover

commonalities and differences by comparing it with data from other tutorial dialog

systems. Finally, the future will bring discoveries of new analysis techniques which may

also be applied to this data. Having multiple data sets on which to test a theory or model

decreases the risk of overfitting and broadens the set of claims that it is possible to make.

www.manaraa.com

CHAPTER 7

CONTRIBUTIONS, FUTURE WORK, AND CONCLUSIONS

7.1 Contributions

7.1.1 The Virtual Teaching Assistant System (Software Artifact)

First, the dissertation describes a unique software artifact called the Virtual

Teaching Assistant system that mediates the question-answering process between

students and staff and facilitates logging and mining the relevant data. This software

system captures the natural language in the questions that students ask as well as the

source code snapshots and context such as the date and assignment that the student is

working on. The artifact has been utilized by several dozen students, and it is a suitable

platform for future research on the questions that novice programmers ask.

7.1.2 A Set of Student Questions

Second, the dissertation describes a dataset consisting of ecologically valid

questions asked by students in an introductory programming class, including the dates

and the assignments about which the questions were asked. This dataset enables

investigations of patterns in question asking within a course. The dataset also contains

source code and compiler errors. The data are stored in a combination of a database file

system that are organized to facilitate mining the data. The ease of mining the data and

www.manaraa.com

106
platform independence is a key distinguishing features of this dataset compared to

many other datasets with source code snapshots. Also, the fact that it consists entirely of

spontaneously asked student questions make it suitable for future studies comparing the

language in various other tutorial dialog scenarios including human-computer dialog,

human-human dialog, and other non-tutorial sets of questions and answers, such as

corpora from corporations.

7.1.3 An Online Analysis Framework

Third, the dissertation describes an analysis framework and an analysis showing

that the additional context including the date and the assignment number can be

leveraged to improve the classification of questions that students ask. An online learning

framework is a viable alternative for an automatic question answering system, answering

a similar number of questions as a batched or supervised setting when doing a similar

analysis. Many modern intelligent tutoring systems require extensive knowledge

engineering and/or they must be trained with data that has been harvested from a

deployed system. The disadvantages to the former alternative are that the system

designers must try to foresee every question that a student could ask, and the cost of

engineering knowledge for the system is typically high. The disadvantage to the latter

alternative is that the system does not benefit students as much in the year while data are

being collected. The online learning framework reduces both of these disadvantages by

waiting until a student has asked a question to engineer knowledge, and then potentially

exploiting that knowledge immediately after it has been added to the system.

www.manaraa.com

107
The central question of the dissertation is "Can domain knowledge and

educational context improve classification of the questions that students ask in a novice

programming class?" Using natural language and cosine similarity as a non-trivial

baseline, I answer this question in the affirmative by improving accuracy by using

domain knowledge (processed compiler error messages) and educational context

(assignment number). I replicate previous results showing that answer caching can

improve accuracy by 1-3% and extend previous work on answer caching by achieving

similar improvement on a more difficult dataset with ecologically valid tutorial dialogue.

Using domain knowledge, answer caching, and educational context, the algorithm

can classify between 23% and 56% of the questions. In the baseline condition with

natural language and cosine similarity, the algorithm classifies 96 questions correctly or

35% of the repetitive questions and 23% the total questions. Using processed compiler

error messages and answer caching, the algorithm classifies 104 questions or 25% of the

total questions and 39% of the repetitive questions. When disaggregating by assignment,

the algorithm classifies 113 questions correctly or 28% of total questions and 56% of

repetitive questions. By exploiting strengths of both approaches, the algorithm can

classify 119 questions or 29% of total questions and 36% of the repetitive questions.

The analysis shows that the natural language or the compiler errors alone are

inadequate to classify student questions. Rather, it is the combination of those features

plus other features such as temporal locality that improve classification accuracy. The

dissertation shows that temporal locality is an important features in educational questions,

www.manaraa.com

108
and that a least recently asked question is almost as likely to have the correct answer

as a question with a high similarity score.

7.2 Future Work

The majority of the research described in this dissertation is focused on a

particular research question, "Can domain knowledge and educational context improve

the classification of student questions?" The dissertation answers that question in the

affirmative for introductory computer science, but leaves many research questions

unanswered.

For example, it is reasonable to suppose that if the VTA system were deployed in

a mature course with a stable portfolio of instructional activities and assignments, the

percentage of novel questions would eventually plateau, perhaps over the course of two

or three years. A longitudinal study to determine where in time that plateau occurs in

time would answer the questions "How long does it take to train the VTA system?" and

"How many questions can it classify automatically when it is fully trained?"

Furthermore, the extra data collected in such a setting might enable the system to

leverage the benefits of both answer caching with error messages and disaggregation by

assignment for an extra boost in accuracy. Deploying the system in other courses besides

introductory computer science could help answer questions about how question asking

behaviour varies across courses and domains, and also reveal whether or not there are

differences in the number of repetitive questions asked.

www.manaraa.com

109
In summary, this research raises many research questions about the questions

that students ask. In the remainder of this section, I describe relevant areas of future

work that pertain less directly to the questions that students ask, but are important for

understanding their help seeking behaviour and opportunities for intelligent interventions

to assist them.

7.2.1 Metacognition

A good teaching assistant can provide answers to the questions that students are

asking. A great teaching assistant anticipates the questions that a student should be

asking and provides an answer even when the student fails to provide a prompt. Such a

teacher can tutor a student not only in cognitive skills but also in meta-cognitive skills.

Early work on metacognition has defined two categories of novice programming

behavior. "Stoppers" are "unwilling to explore the problem further", while

"movers...[try] to repair code in ways that... will not work."[59]. Chad Lane's PhD

thesis [53] showed that novice programmers using the Java langauge also fail to realize

that they need help. His tagged data could be utilized in a machine-learning experiment

to train a classifier that can distinguish between students who are productively engaged

and on task and students who are in need of assistance from a teaching assistant, human

or virtual. Jaime Spaaco has also examined novice programming and produced a dataset

that could be utilized in metacognitive work for novice programmers [73]. Additionally,

the dataset used for my own thesis could be analyzed to produce a set of indicators that

students need help. Other related work in metacognition beyond the programming

www.manaraa.com

110
domain includes papers by Roll [65], Aleven [3], and Rebolledo-Mendez [62, 63].

Collectively, these papers suggest that students in several domains are in need of

metacognitive tutoring and research in this area is likely to be broadly applicable.

However, many people in the Intelligent Tutoring Systems and Artificial Intelligence in

Education communities consider learning gains the gold standard as demonstrated by an

award-winning paper [80], and linking metacognitive tutoring to learning gains remains

an elusive goal [65].

7.2.2 Intervention Evaluation

There are several reasons that introductory computer science students may need

an intervention. Students enter Computer Science 1 with varying levels of expertise;

many need remedial help just to get caught up with their peers who have had more

programming experience. Some students need multiple encounters with a skill to learn it

well, but many assignments involve a single encounter with a skill or a single application

of a skill. Students may need additional instruction to understand the motivation behind a

skill. Finally, some students may benefit from new forms of user-targeted instruction

(e.g., animation clips) that computers utilize to improve engagement in education.

Unfortunately, not all interventions were created equally, so there is a need to

evaluate interventions. For example, previous research has shown that in one group of

interventions, a couple of the interventions were substantially less effective than the

majority [39]. Inspired by the randomized trials and embedded experiments of the

Project LISTEN Reading Tutor [55], the architecture of the VTA system could easily be

www.manaraa.com

I l l

modified to allow educational scientists to collect or create a number of interventions

and measure their relative efficacy in answering student questions. Once interventions

have been evaluated, the less effective interventions can be taken out of the pool and

replaced with new interventions or interventions that are known to be more effective.

Extensions may include a general framework for organizing interventions and

describing them based on several criteria, such as expected prior knowledge, ease of use,

student satisfaction, student learning gains, and others. In some ways, this part of the

system could work like traditional recommender systems used on websites for travel,

movies, and other hobbies. An external mechanism for interventions that are text or URL

based is expected to be much better than more traditional internal interventions because

intervention designers will not need to be intimately familiar with the tutoring system,

and they will be able to create interventions with the web-based tool of their choice on

the development cycle of their choice. Finally, the approach outlined by the dissertation

separates the diagnosis of the student's problem from the selection of intervention, so that

intervention designers do not have to worry about breaking the system when they create

interventions.

7.2.3 Missing Sigma

One of the original justifications for much of the tutorial dialog work done in the

last two decades was that perhaps tutorial dialog could close the gap (the so-called

missing sigma problem) between traditional model tracing tutors and expert human

tutors. Previous work has shown that a tutoring system that has been augmented with

www.manaraa.com

112
natural language tutoring is more effective than the same system without natural

language tutoring. However, based on effect sizes alone, model tracing tutors (e.g.,

Andes or the Algebra Tutor with learning gains of 1.2 [80]) have produced higher

learning gains than natural language tutoring (e.g., AutoTutor with learning gains of 0.9

[36]). To further add to the confusion, recently VanLehn has argued that step tutoring (or

model tracing tutoring) is equivalent to natural [language] tutoring, and that both are

more effective than answer-based tutoring [77]. Although making comparisons between

the two approaches can be thought-provoking, neither one has fully matured, and trying

to definitively evaluate them is roughly comparable to predicting which of two third

graders is going to be a taller adult based simply on their height in the third grade.

Modern tutoring systems are not bad, but they still make many silly mistakes

compared to an expert human tutor. For example, they allow students to game the system

and extract the answer without learning [11], and they frequently use sub-optimal

strategies [39]. Their dialog classification skills are weak, and they don't process natural

language as well as humans do. On the other hand, the computer has an amazing capacity

to retrieve facts and execute algorithms consistently, and in these two areas computers are

substantially better than humans. More research is needed to better understand how to

leverage the strengths of the computer and compensate for its weaknesses specifically in

the area of tutoring.

www.manaraa.com

113

7.2.4 Support for Peer Tutoring, Computer-Based Collaboration

As computing has become more pervasive and computation has extended beyond

the individual desktop, interest has increased in computer supported collaborative

learning and peer tutoring. Early research in this growing field appears promising.

Future research may include designing algorithms to assess student progress on a

problem and pairing the student asking the question with another student who is likely to

be able to help the student, perhaps by completing a peer tutoring script together.

Additional support may even identify and adequately recognize or even reward the most

helpful student peers. Another approach may allow the system to automatically identify

groups of students who have the same concern, allowing the TA to teach the entire group

at the same time.

7.2.5 Usability Issues

A number of usability questions on both the teacher and the student side must be

answered before an automatic question answering system can be deployed in a classroom

setting. On the teacher side, research is needed to determine if training the teacher can

improve and speed up the necessary process of tagging an initial set of questions to train

the classifier. Additional research may investigate if automatic measures such as

question similarity can be exploited to facilitate that task. Once automated interventions

are added, the teacher will need to determine if the student still needs human help

because the system classified the question incorrectly or because the automated

intervention was ineffective. On the student side, studies should investigate whether or

www.manaraa.com

114
not a drop-down menu of frequently asked questions can help students who articulate

their questions poorly. Additionally, students may not accept automated answers to their

questions, especially if they know that a human TA is on duty and available.

7.2.6 Teaching and Grading Support

Automated grading has been a popular research topic at SIGCSE for several

years. One set of automatic grading tools has already been used in cheating detection

[28]. Automated grading may allow students to receive real-time evaluations of their

work and reduce the amount of time human TA's are required to spend grading course

materials. The likelihood that such an automated tool could provide impartial, unbiased,

fair evaluations to all students increases the appeal of automated grading. Another

appealing possibility with automated grading is a teacher tool that can automatically

highlight aspects of the assignment that students found most troubling, so that teachers

can spend extra time reviewing these matters with the current class and provide extra

teaching to future classes.

7.2.7 Classification Schemes for Questions that Novice Programmers Ask

Given a set of categories, classifying questions appears to be relatively

straightforward for humans. However, no widely accepted set of categories or taxonomy

exists for the questions that novice programmers ask. Previous work has suggested either

42, 88, or 226 different categories for compiler errors [2, 42, 76], and compiler errors

only account for less than half of the questions in the data set utilized for this dissertation.

www.manaraa.com

115
Those papers are simply trying to classify compiler errors based on the compiler error

message, not the underlying misconception the student has expressed. Furthermore, a

single piece of code may have multiple issues. Consider a typical problem asking a

student to write code to determine the max in an array of integers. The student may

attempt the problem with partially complete code as follows:

public static int findMax(int [] a){
int max=0;
while(){

if(<max){

Such a piece of code suggests that the student perhaps began the problem, reached a

partial impasse while creating the loop, and a full impasse while working on the

conditional. Ideally, the student would have requested help at the point of the partial

impasse, but students frequently appear to wait until they have reached a full impasse

before requesting help. The resulting code has multiple problems. From the perspective

of the compiler, there is an "illegal start of expression." From a syntactic perspective,

the curly braces are not balanced. From a planning perspective, the student does not

appear to know how to construct a loop. Furthermore, these various errors do not lend

themselves to placement in a hierarchy. "Illegal start of expression" problems can occur

in many kinds of methods.

To further complicate question classification, many students seem to avoid asking

directly about their code, generating distracting natural language garbage. In this

research, such questions would have probably been assigned a label such as "findMax

structure," but that is clearly a composite label that encompasses a broad range of

www.manaraa.com

116
problems. Work on classification schemes that allow free-response student-input to

be assigned multiple, more-fine-grained designations would be applicable for question

classification as well as other problems. That research will probably also require work on

partial parsing, and other approaches for handling poorly formed student input that

cannot be parsed with readily available tools.

Dealing with student input that contains more than one error remains a difficult

open research problem. The research described in this dissertation partially bypasses that

problem by allowing "complex problems" composed of multiple smaller problems and

focusing on the most urgent problem, e.g., the problem causing the first compiler error.

7.2.8 Student Retention and Efficiency

The research to be completed for the thesis must be completed in a relatively short

time period that makes longitudinal studies unrealistic. However, as automated

answering systems and other forms of intelligent tutoring become a more integral part of

the college course experience, it will be important to study the effect that these tools have

on long-term student retention and student efficiency. Student retention and student

programming efficiency may be strongly linked in introductory computer science where

many students who drop out complain about long hours, often long hours of staring at a

computer screen with little productivity. An extended version of the thesis work could be

utilized in such a long-term study to determine if such automated tools help or hurt

students in achieving short-term efficiency and proficiency and long-term success.

www.manaraa.com

117
7.3 Conclusions

My classification methods work over half the time for repetitive student-generated

questions, assuming that the questions can be separated by assignment. Thus, my

methods would work particularly well in a course in which the same assignments are

used over and over, and the long-term goal of using a classification-based approach to

automatically answer questions would be especially valuable in a course in which

students have low access to course staff. These two conditions are typical of online

classes, which represent a fast growing segment of courses in higher education.

The future of education is a large puzzle with many pieces still in development.

Video streaming technology makes it possible to broadcast lectures to a large audience,

and the internet has the potential to reduce or eliminate the cost of textbooks. However,

to encourage students to engage in large classes and online classes, we need more

automatic tools to process their input in a scalable and timely manner, and these kinds of

tools represent major missing pieces. This dissertation has helped to define one of those

missing pieces, namely the elements of an online system to automatically answer student

questions by recycling answers to previous questions.

www.manaraa.com

REFERENCES

1. tf-idfWikipedia,2009.

2. Ahmadzadeh, M., Elliman, D. and Higgins, C. An analysis of patterns of
debugging among novice computer science students Proceedings of the 10th
annual SIGCSE conference on Innovation and technology in computer science
education, ACM, Caparica, Portugal, 2005.

3. Aleven, V., McLaren, B., Roll, I. and Koedinger, K., Toward tutoring help
seeking Applying cognitive modeling to meta-cognitive skills, in Intelligent
Tutoring Systems, (Maceio Brazil, 2004), Springer, 227-239.

4. Aleven, V., Ogan, A., Popescu, O., Torrey, C. and Koedinger, K. Evaluating the
Effectiveness of a Tutorial Dialogue System for Self-Explanation, in Intelligent
Tutoring Systems, 2004, 443-454.

5. Aleven, V., Popescu, O. and Koedinger, K. Pilot-Testing a Tutorial Dialogue
System That Supports Self-Explanation, in Intelligent Tutoring Systems : 6th
International Conference, ITS 2002, Biarritz, France and San Sebastian, Spain,
June 2-7, 2002. Proceedings, 2002, 531-540.

6. Allen, I.E. and Seaman, J. Online Nation, 2007.

7. Anderson, J.R., Corbett, A.T., Koedinger, K.R. and Pelletier, R. Cognitive Tutors:
Lessons Learned. Journal of the Learning Sciences, 4 (2). 167 - 207.

8. Anderson, J.R. and Reiser, B.J. The LISP tutor Byte, 1985, 159-175.

9. Anthony, L., Corbett, A.T., Wagner, A.Z., Stevens, S.M. and Koedinger, K.R.,
Student Question-Asking Patterns in an Intelligent Algebra Tutor, in Intelligent
Tutoring Systems, (Maceio, Brazil, 2004), Springer, 455-467.

10. Baffes, P.T. and Mooney, R.J., A Novel Application of Theory Refinement to
Student Modeling, in American Association for Artificial Intelligence, (Portland,
Oregon, 1996), 403-408.

11. Baker, R.S., Corbett, A.T. and Koedinger, K.R., Detecting Student Misuse of
Intelligent Tutoring Systems, in Intelligent Tutoring Systems, (Maceio, Brazil,
2004), Springer, 531-540.

www.manaraa.com

119

12. Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly, T., Stankosky, A.,
Thiel, D., Dantzich, M.V. and Wax, T. Lifelike computer characters: the persona
project at Microsoft, in Software agents, MIT Press, 1997, 191-222.

13. Baum, S., Brodigan, D., Ma, J. and Steele, P. Trends in College Pricing, 2007.

14. Belkin, N.J., Kelly, D., Kim, G., Kim, J.Y., Lee, H.J., Muresan, G., Tang, M.C.,
Yuan, X.J. and Cool, C. Query length in interactive information retrieval
Proceedings of the 26th annual international ACMSIGIR conference on Research
and development in information retrieval, ACM, Toronto, Canada, 2003.

15. Berger, A. and Mitral, V.O. Query-relevant summarization using FAQs
Proceedings of the 38th Annual Meeting on Association for Computational
Linguistics, Association for Computational Linguistics, Hong Kong, 2000.

16. Bloom, B.S. The 2 Sigma Problem: The Search for Methods of Group Instruction
as Effective as One-to-One Tutoring. Educational Researcher, 13 (6). 4-16.

17. Boyer, K.E., Dwight, A.A., Fondren, R.T., Vouk, M.A. and Lester, J.C. A
development environment for distributed synchronous collaborative programming
Proceedings of the 13th annual conference on Innovation and technology in
computer science education, ACM, Madrid, Spain, 2008.

18. Bradford, R.B. An empirical study of required dimensionality for large-scale
latent semantic indexing applications Proceeding of the 17th ACM conference on
Information and knowledge management, ACM, Napa Valley, California, USA,
2008.

19. Brin, S. and Page, L., The anatomy of a large-scale hypertextual Web search
engine, in Seventh International World Wide Web Conference, (1998), 107-117.

20. Brown, J.S. and Burton, R.R. Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2. 155-191.

21. Brown, J.S., Burton, R.R. and de Kleer, J. Pedagogical, natural language, and
knowledge engineering techniques in SOPHIE I,II,and III. in Sleeman, D.H. and
Brown, J.S. eds. Intelligent Tutoring Systems, Academic Press, London, 1982.

22. Brown, J.S. and VanLehn, K. Repair theory: a generative theory of bugs in
procedural skills. Cognitive Science, 4. 379-426.

23. Burton, R.R., Diagnosing bugs in a simple procedural skill, in Intelligent Tutoring
Systems, (1982), Academic Press.

www.manaraa.com

120

24. Burton, R.R. and Brown, J.S. Toward a natural language capability for computer-
assisted instruction, in O'Neil, H. ed. Procedures for Instructional Systems
Development, Academic Press, New York, 1979.

25. Callan, J.P. Passage-level evidence in document retrieval Proceedings of the 17th
annual international ACM SIGIR conference on Research and development in
information retrieval, Springer-Verlag New York, Inc., Dublin, Ireland, 1994.

26. Carbonell, J.R. Mixed-Initiative Man-Computer Instructional Dialogues,
Massachusetts Institute of Technology, Cambridge, MA, 1970.

27. Dang, H.T., Lin, J. and Kelly, D., Overview of the TREC 2006 Question
Answering Track, in Text REtrieval Conference, (2006), 99-117.

28. Engels, S., Lakshmanan, V. and Craig, M., Plagiarism Detection Using Feature-
Based Neural Networks, in Special Interest Group in Computer Science
Education, (Covington, Kentucky, 2007), ACM, 34-38.

29. Evens, M. and Michael, J. One-on-One Tutoring by Humans and Computers.
Lawrence Erlbaum Associates, 2005.

30. Flowers, T., Carver, C.A. and Jackson, J., Empowering Students and Building
Confidence in Novice Programmers through Gauntlet, in Frontiers in Education,
(2004).

31. Franklin, B.

32. Garner, S., Haden, P. and Robins, A., My program is correct but it doesn't run: A
preliminary investigation of novice programmers' problems, in Australian
Computing Education Conference, (Newcastle, Australia, 2005), Australian
Research and Practice in Information Technology

33. Gorin, A.L., Riccardi, G. and Wright, J.H. How may I help you? Speech
Communication, 23. 113-127.

34. Graesser, A. and Person, N. Question Asking During Tutoring. American
Educational Research Journal, 31. 104-137.

35. Graesser, A.C., Person, N.K. and Huber, J. Mechanisms that Generate Questions,
in Lauer, T.W., Peacock, E. and Graesser, A.C. eds. Questions and Information
Systems, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1992,167-188.

36. Graesser, A.C, VanLehn, K., Rose, C.P., Jordan, P.W. and Harter, D. Intelligent
Tutoring Systems with Conversational Dialogue AIMagazine, 2001, 39-50.

www.manaraa.com

121

37. Graesser, A.C., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D. and
Person, N. Using Latent Semantic Analysis to Evaluate the Contributions of
Students in AutoTutor. Interactive Learning Environments, 8 (2). 129-147.

38. Hammond, K., Burke, R., Martin, C. and Lytinen, S., FAQ finder: a case-based
approach to knowledge navigation, in Artificial Intelligence for Applications, (Los
Angeles, CA, 1995), 80-86.

39. Heiner, C , Beck, J. and Mostow, J., Improving the Help Selection Policy in a
Reading Tutor that Listens in International Conference on Computer Aided
Language Learning, (Venice, Italy, 2004).

40. Hovemeyer, D. and Pugh, W. Finding bugs is easy Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, ACM, Vancouver, BC, CANADA, 2004.

41. Jackson, J., Cobb, M. and Carver, C , Identifying Top Java Errors for Novice
Programmers, in Frontiers in Education, 2005. FIE '05. Proceedings 35th Annual
Conference, (2005), T4C-24-T24C-27.

42. Jadud, M.C. A First Look at Novice Compilation Behaviour Using BlueJ.
Computer Science Education, 75(1).25-40.

43. Jadud, M.C. Methods and tools for exploring novice compilation behaviour
Proceedings of the 2006 international workshop on Computing education
research, ACM, Canterbury, United Kingdom, 2006.

44. Jansen, B.J., Spink, A. and Saracevic, T. Real life, real users, and real needs: a
study and analysis of user queries on the web. Information Processing &
Management, 36 (2). 207-227.

45. Jensen, P. Hybrid Automated Fault Localization in Programs written by Novice
Programmers School of Computing, University of Utah, Salt Lake City, 2007,
175.

46. Johnson, L. PROUST Byte, 1985, 179-192.

47. Kaszkiel, M. and Zobel, J. Passage retrieval revisited Proceedings of the 20th
annual international ACMSIGIR conference on Research and development in
information retrieval, ACM, Philadelphia, Pennsylvania, United States, 1997.

48. Kim, H. and Seo, J. High-performance FAQ retrieval using an automatic
clustering method of query logs. Information Processing & Management, 42 (3).
650-661.

www.manaraa.com

122

49. Kim, J., Shaw, E., Chern, G. and Herbert, R., Novel tools for assessing student
discussions: Modeling threads and participant roles using speech act and course
topic analysis, in Artificial Intelligence in Education, (Los Angeles, 2007), IOS
Press.

50. Kim, J., Shaw, E., Ravi, S., Tavano, E., Arromratana, A. and Sarda, P.
Scaffolding On-Line Discussions with Past Discussions: An Analysis and Pilot
Study of PedaBot. in Intelligent Tutoring Systems, 2008, 343-352.

51. Koedinger, K.R., Anderson, J.R., Hadley, W.H. and Mark, M.A. Intelligent
tutoring goes to school in the big city. International Journal of Artificial
Intelligence in Education, 8. 30-43.

52. Landauer, T.K., Foltz, P.W. and Laham, D. An Introduction to Latent Semantic
Analysis. Discourse Processes, 25 (2/3). 259-284.

53. Lane, H.C. Natural Language Programming and the Novice Programmer
Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 2004, 193.

54. Manning, CD. and Schiitze, H. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, Massachusetts, 1999.

55. Mostow, J., Beck, J.E., Bey, J., Cunneo, A., Sison, J. and Tobin, B., An
Embedded Experiment to Evaluate the Effectiveness of Vocabulary Previews in
an Automated Reading Tutor, in Society of Scientific Studies of Reading, (2003).

56. Neber, H. Training epistemic questioning behavior or elementary students.
Verhaltenstraining. 360-374.

57. Neches, R., Swartout, W.R. and Moore, J.D. Enhanced Maintenance and
Explanation of Expert Systems Through Explicit Models of Their Development
IEEE Transactions on Software Engineering, 1985, 1337-1351.

58. Pasca, M.A. and Harabagiu, S.M. High performance question/answering
Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, ACM, New Orleans, Louisiana, United
States, 2001.

59. Perkins, D.N., Hancock, C , Hobbs, R., Martin, F. and Simmons, R. Conditions of
Learning in Novice Programmers, in Elliot Soloway, James C. Spohrer, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1986, 261-279.

60. Pon-Barry, H. In Search of Bloom's Missing Sigma: Adding the conversational
intelligence of human tutors to an intelligent tutoring system Computer Science,
Stanford, Palo Alto, 2004, 45.

www.manaraa.com

61. Porter, M.F. An algorithm for suffix stripping. Program, 14. 130-137.

62. Rebolledo-Mendez, G., Boulay, B.D. and Luckin, R., "Be bold and take a
challenge": Could motivational strategies improve help-seeking? in Artificial
Intelligence in Education, (Amsterdam, The Netherlands, 2005), IOS Press, 459-
466.

63. Rebolledo-Mendez, G., Boulay, B.d. and Luckin, R., Motivating the Learner: An
Empirical Evaluation, in Intelligent Tutoring Systems, (Jhongli, Taiwan, 2006),
Springer Verlag, 545-554.

64. Robins, A., Haden, P. and Garner, S., Problem Distributions in a CS1 Course, in
Australian Computing Education Conference, (Hobart, Tasmania, 2005),
Conferences in Research in Practice in Information Technology.

65. Roll, I., Aleven, V., McLaren, B., Ryu, E., Baker, R.S.J.d. and Koedinger, K.R.,
The Help Tutor: Does Metacognitive Feedback Improve Students' Help Seeking
Actions, Skills, and Learning? in Intelligent Tutoring Systems, (Jhongli, Taiwan,
2006), Springer Verlag, 360-369.

66. Rose, C.P., Jordan, P., Ringenberg, M., Siler, S., VanLehn, K. and Weinstein, A.,
Interactive Conceptual Tutoring in Atlas-Andes, in Artificial Intelligence in
Education, (2001), IOS Press, 256-266.

67. Rose, C.P., Torrey, C , Aleven, V., Wu, A.R.C. and Forbus, K. CycleTalk:
Toward a Dialogue Agent That Guides Design with an Articulate Simulator, in
Intelligent Tutoring Systems, 2004, 401-411.

68. Rush, M.C., Phillips, J.S. and Panek, P.E. Subject recruitment bias: The paid
volunteer subject. . Perceptual and Motor Skills, 47 (2). 443-449.

69. Salton, G., Allan, J. and Buckley, C. Approaches to passage retrieval in full text
information systems Proceedings of the 16th annual international ACM SIGIR
conference on Research and development in information retrieval, ACM,
Pittsburgh, Pennsylvania, United States, 1993.

70. Sneiders, E., Automated FAQ Answering: Continued Experience with Shallow
Language Understanding, in AAA1Fall Symposium, (1999).

71. Soloway, E., Rubin, E., Woolf, B.P., Bonar, J. and Johnson, L. MENO-II: an AI-
based programming tutor. Journal of Computer-Based Instruction, 10 (1). 20-34.

72. Song, W., Feng, M., Gu, N. and Wenyin, L., Question Similarity Calculation for
FAQ Answering, in Semantics, Knowledge and Grid, Third International
Conference on, (2007), 298-301.

www.manaraa.com

124

73. Spacco, J., Hovemeyer, D. and Pugh, W., An eclipse-based course project
snapshot and submission system, in 3rd Eclipse Technology Exchange Workshop
(Vancouver, BC, 2004).

74. Spohrer, J.C., Soloway, E. and Pope, E. A Goal/Plan Analysis of Buggy Pascal
Programs, in Soloway, E. and Spohrer, J.C. eds. Studying the Novice
Programmer, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1986, 355-
399.

75. Stevens, A.L. and Collins, A., The goal structure of a Socratic tutor, in the
National ACM Conference, (Seattle, WA, 1977), Association for Computing
Machinery, 256-263.

76. Thompson, S.M. An Exploratory Study of Novice Programming Experiences and
Errors, University of Victoria, 2006, 153.

77. VanLehn, K. The Interaction Plateau: Answer-Based Tutoring < Step-Based
Tutoring = Natural Tutoring, in Intelligent Tutoring Systems, 2008, 7-7.

78. VanLehn, K. Mind Bugs. MIT Press, Cambridge, MA, 1990.

79. VanLehn, K., Jordan, P.W., Rose, C.P., Bhembe, D., Bottner, M., Gaydos, A.,
Makatchev, M., Pappuswamy, U., Ringenberg, M., Roque, A., Siler, S. and
Srivastava, R., The Architecture of Why2-Atlas: A Coach for Qualitative Physics
Essay Writing, in Intelligent Tutoring Systems, (Biarritz, France and San
Sebastian, Spain, 2002), Springer, 158-167.

80. VanLehn, K., Lynch, C, Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L.,
Treacy, D., Weinstein, A. and Wintersgill, M., The Andes physics tutoring
system: Five years of evaluations, in Artificial Intelligence in Education,
(Amsterdam, Netherlands, 2005), IOS Press, 678-685.

81. Voorhees, E.M., Overview of the TREC-9 Question Answering Track, in Text
REtrieval Conference (TREC), (Gaithersburg, MD, 2000).

82. Voorhees, E.M., Overview of the TREC 2002 Question Answering Track, in Text
REtrieval Conference (TREC), (Gaithersburg, MD, 2002).

83. Wenger, E. Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge. Morgan Kauffman
Publishers, Los Altos, CA, 1987.

84. Wiemer-Hastings, P., Graesser, A., Harter, D. and Tutoring Research, G. The
Foundations and Architecture of Autotutor. in Intelligent Tutoring Systems, 1998,
334-343.

www.manaraa.com

85. Wiemer-Hastings, P., Wiemer-Hastings, K. and Graesser, A., How Latent is
Latent Semantic Analysis? in Proceedings of the 16th InternationalJoint
Congress on Artificial Intelligence, (San Francisco, 1999), Morgan Kaufmann,
932-937.

86. Wiemer-Hastings, P., Wiemer-Hastings, K. and Graesser, A.C., Approximate
natural language understanding for an intelligent tutor, in 12th International
Florida Artificial Intelligence Research Conference, (1999), AAAI Press, 172-
176.

87. Wiemer-Hastings, P., Wiemer-Hastings, K. and Graesser, A.C., Improving an
intelligent tutor's comprehension of students with Latent Semantic Analysis, in
Artificial Intelligence in Education, (1999).

88. Witten, I.H. and Frank, E. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations.

89. Woolf, B.P. Context-dependent Planning in a Machine Tutor University of
Massachusetts, University of Massachusetts, Amherst, Amherst, MA, 1984.

